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Abstract

There is often a tradeoff between accuracy and scal-
ability when analyzing large network datasets; oth-
erwise promising techniques can be computationally
infeasible when applied to networks with huge num-
bers of nodes and edges. One way of extending the
reach of network analysis is to sparsify the graph
by retaining only a subset of its edges in order to
make the reduced graph more tractable. This pa-
per proposes a new sparsification algorithm that pre-
serves the properties of a random walk on the net-
work. Specifically, the algorithm finds a subset of
edges that best preserves the stationary distribution
of a random walk by minimizing the Kullback-Leibler
divergence between a walk on the original and spar-
sified graphs. This objective can be optimized using
a highly efficient greedy search strategy. Experimen-
tal results are presented that test the performance
of the algorithm on the influence maximization task.
These results demonstrate that sparsification allows
near-optimal solutions to be found in a small frac-
tion of the runtime that would required using the full
network. Two cases are shown where sparsification
allows an influence maximization algorithm to be ap-
plied to a dataset that previous work had considered
intractable.

1 Introduction

Analyzing large social networks can reveal many in-
sights including community structure [6, 18, 4, 1], in-
fluential actors [13, 3], and the spread of influence
[10, 15]. However, algorithms are always limited by
their scalability, often putting massive datasets out
of reach. Real world networks of interest can contain
millions of nodes and billions of edges, which prevents
many effective methods from being used in important
situations.

One way to help existing algorithms scale to larger

datasets is to construct a more concise representa-
tion of the network with fewer nodes or edges. If
this new graph matches the structural properties of
the original, then analysis can be conducted with a
smaller dataset and the results propagated back to
the original network. Sparsification is one such tech-
nique, in which all of the nodes of the original graph
are preserved but only a subset of edges are retained
[22, 8, 17]. An effective sparsification method will
preserve desirable features of the connectivity of the
larger network with a small number of edges, bringing
the network within reach of other algorithms. As a
preprocessing step, sparsification must be highly com-
putationally efficient in order to tackle large datasets
that are infeasible for more elaborate algorithms.

The aim of this paper is to develop and evaluate
a new sparsification algorithm that is based on pre-
serving the properties of a random walk on the graph.
The objective is to specifically target applications
that deal with dynamic processes taking place on net-
works such as influence spread. A random walk serves
as a generic model of these behaviors and proves to be
computationally amenable to sparsification. The pro-
posed algorithm finds a sparsification that preserves,
as closely as possible, the limiting behavior of a ran-
dom walk on the network, as exhibited in its station-
ary distribution.

This method promises to fill a gap in the exist-
ing literature on sparsification. Namely, it retains
global properties of network organization while being
simple, computationally efficient, and working only
on the topology of the network with no need for ad-
ditional information. This algorithm is tested as a
preprocessing step for network analysis on real data.
Specifically, the influence maximization problem is
used as a benchmark due to the wide variety of al-
gorithms which are available for it. Results across a
variety of datasets show that the proposed sparsifi-
cation algorithm allows virtually the same quality of
influence maximization to be performed while using



only a fraction of the time. Accordingly, two cases
are shown where sparsification allows influence maxi-
mization algorithms to scale to datasets that previous
work has considered out of reach.

2 Related Work

Sparsification has been addressed by researchers
working in a number of different disciplines and com-
munities. Previous algorithms can be roughly broken
down into three categories depending on their goals.

2.1 Application-based sparsifiers

Perhaps most relevant to the proposed work are spar-
sification algorithms designed specifically to aid with
particular network analysis tasks. For example Sat-
uluri et al. [20] developed a sparsification algorithm
specifically for graph clustering. The underlying prin-
ciple is to preferentially retain edges between nodes
that are in the same cluster by selecting edges be-
tween nodes with similar neighbors. Thus, the struc-
ture that is retained is highly tuned to the application
domain: clusters should be preserved, but other forms
of organization in the graph will be lost by design.

Another algorithm by Mathioudakis et al. [17] is
specifically directed at influence maximization. It
uses a maximum likelihood method to find a set of
edges that generates an observed set of influence cas-
cades with the greatest probability. Notably, this
method requires information beyond the topology of
the network: it uses example sets of node activations
to produce the estimate. This is useful for tasks where
such data is available but limits its applicability when
only the structure is known. In contrast, the proposed
algorithm operates only on the adjacency structure of
the graph.

The proposed algorithm also departs from these
sparsifiers in that it attempts to retain a more general
kind of structure associated with the flow of informa-
tion through a network. Hopefully, this will prove
useful across multiple application domains.

2.2 Spectral and cut sparsifiers

Another class of sparsifiers developed in theoreti-
cal computer science preserves a given feature of
the graph to within some degree of precision. One
prominent example is cut sparsifiers. These algo-
rithms produce a subgraph for which the value of
every cut is preserved up to a multiplicative fac-
tor of 1 ± ε. A result from Benczr and Karger [2]
shows that such a sparsification can be constructed
in O(m log2 n) time for an unweighted graph and will

contain O(n log n/ε2) edges. This algorithm has pri-
marily been used to construct more efficient approx-
imation algorithms for computing cuts and flows in
graphs [8].

Spectral sparsifiers are a generalization of cut spar-
sifiers that preserve the Laplacian quadratic form of
the graph to within a multiplicative factor. Spiel-
man and Teng [22] showed that a sparsification with
O(n log n/ε2) edges can be produced in O(m logc n)
time for some constant c. Since the eigenvalues of the
Laplacian matrix are related many properties of dy-
namic processes on networks, this sparsifier may be
of interest for some network analysis problems. How-
ever, the method has not been tested on real-world
(or synthetic) graphs, so it unknown how useful the
results are, or whether the constant c is small enough
to support effective scaling.

2.3 Backbone detection

An alternative approach to reducing the density of a
network is backbone detection. Roughly, these algo-
rithms attempt to find a core structure of links that
are in some way the most significant in order to al-
low easier visualization and analysis. A traditional
method for reducing edge density is simple thresh-
olding: in a weighted graph, setting a global thresh-
old and removing all edges with lower weights. How-
ever, this is clearly inappropriate for many real-world
graphs, which display a heavy-tailed degree distribu-
tion, because no global threshold is appropriate for
all parts of the network.

The first attempt at backbone detection was made
by Serrano et al. [21]. They assume a null model
where the normalized weights of a node with degree
k are drawn from a random subdivision of the in-
terval [0, 1] into k segments. Edges are retained by
the disparity filter when they are significant at level
α with respect to this null distribution. This filter
sets different thresholds depending on a node’s de-
gree, which avoids the problems of global thresholds.
It is worth noting that this method is only applicable
to weighted networks.

Subsequent work has built on the disparity filter by
proposing other null distributions by which to model
edge weights. For example, Foti et al. [7] introduced a
nonparametric method that uses the empirical distri-
bution of edge weights at each node. Another recent
algorithm developed by Radicchi et al. [19] uses a null
model where the adjacency structure of the network is
fixed but edge weights are randomly drawn from the
empirical distribution of all weights in the network.

These methods are often useful for producing an
illustrative summary of a network that contains the



most important connections at each node. However,
it is important to note that, contrary to the objective
of this paper, they do not attempt to preserve global
properties of the network. Additionally, they are only
applicable to weighted networks.

3 Algorithm Description

Many questions of interest, such as influence maxi-
mization, deal in some way with the behavior of pro-
cesses taking place on a network. A good proxy for
such behavior is a random walk, which gives a generic
model of dynamic processes. Subject to certain con-
nectivity conditions, a random walk on a graph is an
irreducible and aperiodic Markov chain which con-
verges to a stationary distribution over the vertices
independently of the initial condition. The proposed
algorithm finds a sparsification which approximately
preserves this limiting behavior. It does so by min-
imizing the Kullback-Leibler divergence between the
stationary distribution of a walk on the original and
sparsified networks.

3.1 Objective formulation

The stationary distribution of a walk on a random
graph is given by

π(i) =
d(i)

2|E|
.

That is, the walk spends time at each node i pro-
portional to its degree d(i). Now, let E′ ⊂ E be a
sparsification of the network. Let dE′(i) be the de-
gree of node i, considering only edges contained in E′.
The Kullback-Leibler divergence between the distri-
bution of a walk on the original and sparsified graphs
is

DKL(π||πE′) =
∑
i

πi log
π(i)

πE′(i)

=
∑
i

π(i)

[
log

d(i)

2|E|
− log

dE′(i)

2|E′|

]
=
∑
i

π(i)

[
log

d(i)

dE′(i)

]
+ log

|E′|
|E|

The final expression has two noteworthy properties.
First, the final term depends only on the cardinality
of E′. Therefore, it is invariant with respect to par-
ticular the choice of edges. Second, the summation is
over terms which depend only on the degree of each
node. That is, the objective function is local in the

sense that the value of any given edge depends only
on the terms in the summation corresponding to its
endpoints, and no others. This will prove important
for efficient optimization.

Unfortunately, it will not be possible to use this
formulation in general because a sparsification could
assign some node a degree of zero, resulting in an in-
finite KL divergence. However, it is possible to add
a small modification to the input graph so that the
terms are always finite. Specifically, we can consider
a random surfer (as in the PageRank algorithm) in-
stead of a random walker. A random surfer takes a
step in the random walk with probability 1 − τ for
some τ > 0, and with probability τ teleports to a
random node in the graph. This teleportation proba-
bility is equivalent to adding directed edges from ev-
ery vertex to every other vertex with sufficient weight
so that one of these supplementary edges is followed
with probability τ no matter what vertex the walker
is at. In effect, the graph is fully connected by a set of
weak edges, guaranteeing the existence of a station-
ary distribution and a finite KL divergence.

As the algorithm progresses, maintaining a con-
stant probability τ requires adjusting these weights.
Let Ek be a subset of k edges: the set of edges ob-
tained after the algorithm has been run for k steps.
Let d(i) be the degree of vertex i not counting these
supplementary edges and dEk

(i) be the degree of
i considering only edges which are included in Ek.
Then, the additional weight directed towards each
vertex is

cEk
,
∑
j

1

n

(
τ

1− τ

)
dEk

(j)

=
1

n

(
τ

1− τ

)
|Ek|

which gives each vertex a final weight of dEk
(i) +

cEk
. The corresponding total weight in the graph is

1
1−τ |Ek|. Having obtained these totals, we can derive
the objective to be minimized. Call the stationary
distribution of a random walk on the original graph
π and the distribution on the subgraph πEk

. The
Kullback-Leibler divergence given a sparsification Ek
is

DKL(π||πEk
) =

∑
i

πi log
π(i)

πEk
(i)

=
∑
i

π(i)

[
log

d(i) + cE
dEk

(i) + cEk

+ log
|Ek|
|E|

]
=
∑
i

[
π(i) log

d(i) + cE
dEk

(i) + cEk

]
+ log

|Ek|
|E|

.

The reduction in the divergence after adding an



edge (p, q) is

DKL(π||πEk
)−DKL(π||πEk+1

) =[∑
i

π(i) log
d(i) + cE

dEk
(i) + cEk

+ log
|Ek|
|E|

]
−[∑

i

π(i) log
d(i) + cE

dEk+1
(i) + cEk+1

+ log
|Ek+1|
|E|

]

=
∑
i

π(i) log
dEk+1

(i) + cEk+1

dEk
(i) + cEk

+ log
|Ek|
|Ek+1|

=
∑

i/∈{p,q}

π(i) log
dEk

(i) + cEk+1

dEk
(i) + cEk

+

∑
i∈{p,q}

π(i) log
dEk

(i) + 1 + cEk+1

dEk
(i) + cEk

+ log
|Ek|
|Ek+1|

.

The first term in this expression sums over all vertices
that are not endpoints of the newly added edge. This
term is small because the only change to the degree of
these vertices comes from manipulations of the ”tele-
port” edges in order to keep the total probability of
teleportation constant. In fact, this change is small
enough to be ignored in the optimization. Assuming
that vertices have degree O(1), as is typical for real
world networks:

∑
i/∈{p,q}

π(i) log
dEk

(i) + 1
n

(
τ

1−τ

)
|Ek+1|

dEk
(i) + 1

n

(
τ

1−τ

)
|Ek|

=
∑

i/∈{p,q}

π(i) log

[
1 +O

(
1

n

)]

<
∑
i

π(i) log

[
1 +O

(
1

n

)]
= log

[
1 +O

(
1

n

)]
.

This term quickly goes to 0 as n increases. Accord-
ingly, we will not consider this term in the subsequent
analysis, and will simply augment the degree of each
node by cEk

to ensure that the stationary distribution
exists at each step. Where this term does not impact
the results, it will be absorbed into the degree of each
node to keep notation compact.

3.2 Proposed algorithm

Given this formulation of the objective, we wish to
solve the problem

Ek = arg min
E′⊂E,|E′|≤k

DKL(π||πE′)

Here, k is the number of edges that the sparsification
will contain. In practice, k could be fixed ahead of

time, or it could be chosen during the execution of the
algorithm (e.g. stopping execution when the marginal
gain of adding an edge drops below some threshold).

To introduce the proposed algorithm define for all
E′ ⊂ E, u ∈ E/E′

∆DKL(E′, u) = DKL(π||πE′)−DKL(π||πE′∪{u})

which is the marginal benefit of adding an edge u.
The greedy algorithm maximizes this marginal bene-
fit at each stage of the algorithm:

E0 = ∅
Ek+1 = Ek ∪ arg max

u∈E/E′
∆DKL(Ek, u) ∀k < kmax

That is, each stage of the algorithm produces a spar-
sification with k + 1 edges from one with k edges
by maximizing the marginal gain of the edge that
is added.

It can be shown that the greedy algorithm finds
the optimal value of the objective function. Roughly,
this is because the stationary distribution is the sum
of terms which are local to each node. Therefore, the
choice made at each iteration only influences the value
of a few neighboring edges; a local choice never causes
global changes in the value of edges. The consequence
of this property is that choices which are optimal at
each step individually remain optimal in hindsight, so
a greedy algorithm succeeds in finding the best set of
edges.

3.3 Runtime analysis

The computational cost of the algorithm comes from
computing the marginal benefits and ordering them
to choose the greatest. In order to minimize these
costs, the marginal benefits can be stored in a pri-
ority queue (implemented, e.g., using a binary heap)
and updated only when necessary. Because of the
locality property of the objective, when an edge is
added, the only marginal benefits which change are
those of edges which share a vertex with the most
recent addition. For each of these modifications, re-
computation of the marginal benefit takes time O(1),
and updating the priority queue takes time O(logm).
Assuming that each node has degree O(1), realistic
for real-world networks, the runtime per iteration of
the algorithm is O(logm) because only O(1) adjust-
ments to the heap are needed. Thus, final runtime is
O(k logm). In this formulation, the runtime depends
only logarithmically on the size of the network. How-
ever, it will remain to be seen experimentally whether
larger networks require a proportionally greater num-
ber of edges, which would imply a computational cost
of O(m logm).



The runtime of the proposed algorithm can be
greatly decreased in practice by noting that the
marginal gain of adding each edge can be evaluated
in a lazy manner. Leskovec et al. [15] showed that
when the objective function is submodular, reevalu-
ating the marginal gains at each step is unnecessary.
Submodularity formalizes a property of diminishing
returns in an objective function. Given a ground set
of items X, a function f : P(X) → R is called sub-
modular if f({x}∪A)−f(A) ≥ f({x}∪B)−f(B) for
all x ∈ X/(A∪B) and A,B ∈ P(X) such that A ⊆ B.
That is, the marginal value to adding an item x can
only decrease as additional items are selected. It is
easy to see that the objective function is submodular
up to a term that is constant with respect to the par-
ticular edges that are chosen. If the objective function
is submodular, then the marginal gain of an item in
one time step is an upper bound on its value in later
time steps. Thus, if a given edge is optimal compared
to a set of values from earlier iterations, it must re-
main optimal given the current values. Accordingly,
it is only necessary for the evaluation of the best edge
to be based on the current state; it is not necessary to
reevaluate the entire edge set. This observation offers
dramatic speedups in practice.

4 Experiments

Sparsification is a preprocessing step for further net-
work analysis tasks. Accordingly, a sparsification al-
gorithm should be evaluated based on how useful its
output is for the problem under consideration. This
paper focuses on applications to the influence maxi-
mization task. The proposed algorithm is primarily
designed to preserve the dynamic properties of the
network. Thus, applications dealing with spreading
processes and information flow are a natural fit. Influ-
ence maximization is one such domain, and has been
the subject of a great deal of research. This allows
the a variety of existing methods to be used in the ex-
periments. The next section introduces the influence
maximization domain in more detail.

4.1 Influence maximization

The influence maximization problem, first formalized
by Kempe, Kleinberger, and Tardos [13] as a discrete
optimization problem, is to choose a seed set of k
nodes which will maximize the spread of some in-
formation through a network. A model of influence
propagation is assumed, where nodes are activated by
their neighbors, and then have some chance of activat-
ing other nodes, and so on. The most popular models

unfold in discrete time steps. In the Linear Thresh-
old Model (LTM) [12], nodes become active at each
step once a sum of activations from their neighbors
passes a given threshold. In the Independent Cascade
Model (ICM) [9], when a node becomes active it has
one chance to infect its neighbors, and does so with
some probability pij set by the underlying system.

The experiments focus on the use of sparsification
as a preprocessing step for influence maximization.
Accordingly, the impact of sparsification is exam-
ined for several different influence maximization al-
gorithms:

• CELF: The greedy algorithm of Leskovec et
al. [15], which incorporates lazy evaluation of
marginal gains.

• SP1M: An algorithm by Kimura and Saito [14]
which approximates the influence spread in the
ICM by assuming that each node can be influ-
enced along the shortest path from the seed set,
or a path that is at most one edge longer.

• PMIA: A state of the art influence maximiza-
tion algorithm by Chen et al. [3]. PMIA re-
stricts influence spread evaluations to a local area
around each node.

• InfluMax: A recent algorithm developed by
Gomez-Rodriguez and Schölkopf [10]. It per-
forms influence maximization in a continuous-
time version of the ICM. InfluMax has been
shown to achieve higher influence spreads than
previous approaches, but is not scalable to large
networks.

4.2 Datasets

There are four principal datasets used in this analysis,
spanning a range of sizes and functions:

• net-HEP: A collaboration network taken from
the high-energy physics section of the arXiv.
The nodes correspond to authors, who are con-
nected by an edge if they have coauthored at
least one paper together. The data set has
been frequently used as a test case for in-
fluence maximization [13, 3, 11] and is avail-
able from http://research.microsoft.com/

en-us/people/weic/projects.aspx.
• email-Enron: the dataset of email correspon-

dence from the Enron corporation. Nodes cor-
respond to employees, and edges link those who
have exchanged at least one email. It is available
from the SNAP network repository [16].

• DBLP: a citation network from the DBLP com-
puter science bibliography. Similarly available
from [16].

• Epinions: a trust network from the Epinions



web site. Users can elect to trust each other, and
these decisions correspond to edges. Available
from [16].

Table 1 provides the size and a few key statistics for
each of the datasets.

4.3 Benchmarks

We evaluate several sparsification algorithms based
on how well they serve as a preprocessing step for
influence maximization. As explained in Section 2,
previous sparsification methods are not directly com-
parable to the algorithm developed here. The closest
is that of Mathioudakis et al. [17], which also deals
with sparsification of influence networks. However,
the authors assume that the algorithm has access to
observed traces of information diffusions in the net-
work. The algorithm proposed here uses only the ad-
jacency structure of the network, so it would not be
useful to directly compare the two approaches. Ac-
cordingly, the proposed algorithm is compared to two
baseline approaches which represent common heuris-
tics for such tasks. The algorithms considered are:
• RW: The random-walk based sparsifier proposed

here.
• Degree: Rank edges according to the sum of the

degrees of their endpoints and choose the top k.
• Centrality: Rank edges according to the sum of

the eigenvector centrality of their endpoints and
choose the top k.

5 Results

This section presents the performance of each of
the three sparsification algorithms on the chosen
datasets. The first two subsections deal with the
tradeoff between the influence spread that is achieved
vs. the computational time required for each influ-
ence maximization algorithm, while the last subsec-
tion presents results in which the CELF and In-
fluMax algorithms are applied to unprecedentedly
large datasets using the proposed sparsification al-
gorithm.

5.1 Influence spread

The objective of influence maximization is to com-
pute the optimal seed set with respect to the ex-
pected influence spread on the graph. Therefore, the
natural benchmark for a chosen sparsification is how
closely the influence spread achieved on the sparsified
graph approaches the spread on the full graph. The
results presented here characterize the gain in influ-
ence spread as the sparsifier is allowed to select an

increasing fraction of edges in the graph. For each
sparsifier and influence maximization algorithm, the
influence spread achieved using a given fraction of
edges is compared to that achieved on the full graph.
Note that the objective function is always evaluated
using the complete graph: seed nodes are selected us-
ing the sparsified graph, and then the propagation
model is simulated on the full graph in order to cal-
culate the influence spread. Different algorithms are
applied to different datasets depending on their scal-
ability: CELF, SP1M, and PMIA are applied to net-
HEP, SP1M and PMIA are applied to email-Enron,
and only PMIA is applied to DBLP and Epinions.
InfluMax is not sufficiently scalable to be directly ap-
plied to any of the full datasets. Figures 1-4 show the
results. The colored lines show the influence spread
achieved by each sparsifier, while the black line pro-
vides the results obtained on the full graph for com-
parison. Each influence maximization algorithm is
given a budget of 50 nodes.

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

58

60

62

64

66

68

70

72

74
In

flu
en

ce
sp

re
ad

RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050 0.075 0.100

Fraction of edges

58

60

62

64

66

68

70

72

74

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

50

55

60

65

70

75

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050 0.075 0.100

Fraction of edges

50

55

60

65

70

75

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(d) SP1M (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

0

50

100

150

200

250

300

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(e) CELF

0.000 0.025 0.050 0.075 0.100

Fraction of edges

0

50

100

150

200

250

300

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(f) CELF (high sparsity)

Figure 1: Influence spread for the net-HEP dataset

An immediate conclusion from these results is that
sparsification can be extremely effective for the influ-
ence maximization task: only a small fraction of the
original edges are needed to obtain the same quality
of results on the net-HEP, DBLP, and email-Enron
datasets. However, the sparsifiers under considera-
tion do not converge equally quickly to the optimal
value. In most cases, the RW algorithms converges



0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

300

450

600

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(a) PMIA

0.000 0.025 0.050

Fraction of edges

300

350

400

450

500

550

600

650

700

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(b) PMIA (high sparsity)

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of edges

300

450

600

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(c) SP1M

0.000 0.025 0.050

Fraction of edges

300

350

400

450

500

550

600

650

700

750

In
flu

en
ce

sp
re

ad

RW
Degree
Centrality

(d) SP1M (high sparsity)

Figure 2: Influence spread for the email-Enron dataset

Table 1: Network datasets.

Name Nodes Edges Clustering coefficient Average degree

net-HEP 15,233 31,398 0.498 4.12

email-Enron 36,692 183,831 0.497 10.02

DBLP 317,080 1,049,866 0.632 6.62

Epinions 75,879 508,837 0.137 10.69
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Figure 3: Influence spread on the DBLP dataset.
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Figure 4: Influence spread on the Epinions dataset.

fastest, with the other two requiring several times
more edges to reach the optimal influence spread.

The Epinions dataset appears to present a greater
challenge to sparsification. Both RW and Centrality
perform more poorly here, with practically the entire
dataset needed to reach the optimum. This can po-
tentially be explained by reference to the properties
of the underlying network. As shown in Table 1, the
Epinions network has by far the lowest clustering co-
efficient of any of the datasets under consideration.
A high clustering coefficient indicates that a node’s
neighbors are likely to be connected themselves; that
is, the local area around each node is likely to be

dense. In this situation, which characterizes the other
datasets, edges are likely more redundant because
there are many roughly equivalent paths for influence
to reach the same destination. However, when a net-
work is not well-clustered, edges make more distinct
contributions to influence spread in the network.

However, it is important to note that there is of-
ten a spike in performance when very few edges are
used, in the range of 100 to 1000. For convenience,
the right column of each figure magnifies this range
of the graph. On the net-HEP dataset, the results
are already close to optimal at only 20 edges (out of
over 31,000), and reach optimality by 500 edges. On
the email-Enron network, only 500 edges (out of over
118,000) are again required for the RW algorithm to
reach the optimal value for both the PMIA and SP1M
algorithms. The same approximate range (100-1000)
edges also produces near-optimal values for the DBLp
and Epinions datasets. It is striking that virtually the
same number of edges is required as the size of the
network increases by more than two orders of magni-
tude. This property, which is not always shared by
the baseline algorithms, is extremely useful for spar-
sification because it means that the number of edges
which must be selected grows only slowly as a func-
tion of the graph size. So, graphs which are orders
of magnitude too large for a given influence maxi-
mization algorithm could potentially be analyzed us-
ing sparsification without a significant loss in quality.
This possibility is further explored later in the sec-
tion.

It is interesting that performance often decreases
as the number of edges is increased past this high-
sparsity regime. In effect, sparsification performs best



when it identifies the edges which are unambiguously
most important. Adding additional edges beyond this
point just creates clutter which complicates the job
of influence maximization algorithms. That is, spar-
sification is best used to prune away the bulk of edges
which have little impact on the overall properties of
influence propagation, leaving only a small core of the
network for further analysis.

5.2 Speedup

This section characterizes the tradeoff between the
fraction of edges selected and the amount of time re-
quired to run the influence maximization algorithm.
While both PMIA and SP1M are sufficiently scalable
that the speedups are not necessary for the datasets
which are considered, these results help show the util-
ity of sparsification for addressing datasets that are
currently out of reach for these algorithms. Figures
5-8 present the results for different datasets.

In most cases, the RW algorithm provides the slow-
est growth in runtime as edges are added. It is im-
portant to note that the growth in the runtime for
RW is (in all but one case) sublinear, though this
is sometimes not the case for Degree and Centrality.
Since the results of the previous section suggest that
it will typically be sufficient to keep only a small frac-
tion of edges, these results are magnified in the right
column of both figures. Here, it is apparent that op-
timal results can be delivered in only a small fraction
of the time required by the original algorithm. For
instance, on the email-Enron dataset, applying spar-
sification with 500 edges yields a speedup of anywhere
from 13-35x, compared to using the full network.
This suggests that sparsification can achieve dramatic
speedups without sacrificing significant quality in the
resulting influence spread.

5.3 Scaling to large networks

One of the most promising uses of sparsification is to
apply influence maximization algorithms to networks
which would otherwise be too large for computational
tractability. Two of the algorithms considered here,
CELF and InfluMax, are not scalable to large graphs.
However, they can be used on graphs which are an or-
der of magnitude larger than was previously possible
using sparsification.

CELF has previously been applied to the net-HEP
dataset [3]. However, larger networks have either
been dismissed as impractical [3], or else running
CELF on them required amounts of time that are
usually infeasible (7 days in [11]). Here, CELF is
applied to the email-Enron network in a matter of
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Figure 5: Runtime for the net-HEP dataset
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Figure 7: Runtime on the DBLP dataset.

minutes. Figure 9 shows the runtime and influence
spread of CELF applied to this dataset. The influ-
ence spread shown in Figure 9a increases only slightly
as the algorithm runs, suggesting that a near-optimal
seed set has been found. As can be seen in 9b, the
runtime is uniformly less than five minutes.

InfluMax, while achieving influence spreads greater
than that of PMIA or SP1M, has never been applied
to a large network. Indeed, Du et al. [5] showed that
it required more than 24 hours to select 3 seed nodes
on a synthetic network with 128 nodes and 320 edges.
Here, InfluMax is applied to net-HEP, which contains
contains over 15,000 nodes and 31,000 edges, again
with a budget of 3 nodes. Figure 10c shows the run-
time of InfluMax on net-HEP. With sparsification,
InfluMax can be run on a 31,000-edge network in less
than an hour. Unfortunately, the true influence can-
not be calculated because evaluating the influence
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Figure 6: Runtime for the email-Enron dataset
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Figure 8: Runtime on the Epinions dataset.
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Figure 9: CELF applied to the email-Enron dataset

spread of a seed set in the continuous time model
used by InfluMax is intractable for large networks.
However, Figure 10a shows the influence spread that
is achieved on the sparsified network. This quan-
tity increases as more edges are added. However,
an increase should be expected regardless of whether
the true influence spread is different since additional
edges increase the number of nodes that are reach-
able. Figure 10b shows that the number of nodes with
non-zero degree after sparsification increases much
faster than the influence spread as more edges are
added. While not conclusive, this is reason to think
that sparsification results in influence spreads that
are close to the true value. Thus, the examples of
both CELF and InfluMax demonstrate that sparsi-
fication can help algorithms scale to datasets which
were previously out of reach.

6 Conclusions

Dynamic processes are a crucial part of networked
systems, and analysis of their properties underpins
many tasks in network analysis. Because such pro-
cesses pose hard computational problems, it is nec-
essary to develop scalable algorithms which provide
good approximations to the optimal solution. This
paper proposes a new sparsification algorithm specifi-
cally targeted at preserving the properties of dynamic
processes while using a dramatically smaller set of
edges. A formulation based on the stationary prop-
erties of random walks on the graph gives rise to an
algorithm which is both optimal and computationally
efficient.

This algorithm was evaluated on four real-world
network datasets. The experiments focused on the in-
fluence maximization task, as this provides an exam-
ple of a computationally hard problem dealing with
dynamic behavior which has been the subject of a
great deal of recent work. The results show that the
proposed sparsification method allows near-optimal
sets of seed nodes to be found at a small fraction
of the computational cost. Strikingly, the number of
edges that must be retained for near-optimal results
appears to grow only very slowly with the size of the
network. This property could prove extremely use-
ful across a variety of other influence maximization
algorithms and other network analysis tasks.

Because only a small number of edges need be re-
tained, two influence maximization algorithms were
applied to datasets which previous work had con-
sidered out of reach. In both cases (CELF and In-
fluMax), sparsification allowed influence maximiza-
tion to be performed on a network that was at least
an order of magnitude larger than was previously pos-
sible. These experiments demonstrate that sparsifi-
cation is a vital method for scaling algorithms to the
extremely large datasets made available by social me-
dia.

Future work can improve the formulation of the ob-
jective by incorporating additional information. For
example, nodes and edges in a network are typi-
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Figure 10: InfluMax applied to the net-HEP dataset

cally endowed with attributes such as preferences or
group identities. Because of tendencies such as ho-
mophily, such attributes will impact the behavior of
dynamic processes. Incorporating knowledge of at-
tributes, when such information is available, could
greatly improve the accuracy of the resulting model.
Additionally, this work has focused on the stationary
properties of a random walk for the sake of computa-
tional and analytic tractability. However, real-world
processes are often far from stationarity, and model-
ing nonstationary behavior is another promising way
of extending the algorithm.

A final direction for future work is to test the spar-
sification algorithm on additional domains related to
dynamic processes. While influence maximization is
a well-studied example, examining additional tasks
could help us better characterize the applicability of
sparsification for preprocessing networks.
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