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Abstract. This paper focuses on new challenges in influence maximiza-
tion inspired by non-profits’ use of social networks to effect behavioral
change in their target populations. Influence maximization is a multia-
gent problem where the challenge is to select the most influential agents
from a population connected by a social network. Specifically, our work is
motivated by the problem of spreading messages about HIV prevention
among homeless youth using their social network. We show how to com-
pute solutions which are provably close to optimal when the parameters
of the influence process are unknown. We then extend our algorithm to
a dynamic setting where information about the network is revealed at
each stage. Simulation experiments using real world networks collected
by the homeless shelter show the advantages of our approach.

1 Introduction

Many behaviors are mediated by social influences, so a population’s social net-
work is essential to spreading a desired behavior. The influence maximization
problem models a social network where a population of agents can influence each
other via the links of the network. The challenge is to select the most influen-
tial nodes, a task with many applications. For instance, nonprofit organizations
harness social networks to improve health in disadvantaged groups by conduct-
ing in-person social interventions. Such interventions have proven successful in
many domains [17], including reducing HIV spread [13], improving nutrition [8],
and reducing smoking [15]. In this paper, we use as an example the problem of
spreading messages about HIV prevention among homeless youth. HIV/AIDS
kills 10,000 people each year just in the U.S. [2], and the proportion of homeless
youth who are HIV positive is over ten times that for populations with stable
housing [12]. However, as is typical of nonprofits, homeless shelters only have
sufficient resources to accommodate a few youth in each intervention [14]. They
depend on word of mouth to expand the reach of their message.

While influence maximization has been well studied in online social net-
works, many domains (e.g., HIV prevention in homeless youth) raise three new
challenges. First, organizations face parameter uncertainty. Models of influence
spread [7] require numerous parameters which give the probability of influence
spread along each edge. However, organizations acquire only a partial picture



of the network from field observations, Facebook contacts, etc., and there will
inevitably be many links of uncertain strength [13]. Thus, we require algorithms
which perform well with large uncertainty about the model parameters.

Second, the problem is dynamic. The organization (e.g., the homeless shelter)
can ask participants about their immediate social circle during each intervention.
Hence, updates about the true parameters are given at each stage, informing
node selections for future interventions. We discuss the shortcomings of some
related work which uses POMDPs for dynamic influence maximization in Section
3 [19, 18], but this related work has certainly failed to address the challenges of
parameter and execution uncertainty.

Third, organizations face execution uncertainty because they cannot be sure
that the youth (i.e., nodes in the social network) they select for an intervention
will actually show up. This problem is particularly acute in our example domain
because a number of events could prevent a youth’s participation. For instance,
a youth might have been arrested or gone to stay with relatives.

While we illustrate these issues through health-related interventions, the un-
derlying principles apply to many influence maximization domains. Take, for
instance, a viral marketer who generates word of mouth by giving away a lim-
ited number of discounts. While the marketer likely will not know how influence
propagates ahead of time, they can learn more during the campaign by surveying
their users (e.g. “name five friends to receive this coupon”).

Overview of our approach: We start by addressing parameter uncertainty
in the nondynamic setting by showing how to compute solutions whose value un-
der any parameter setting is close to the optimum if the true parameters were
known. We view the problem as zero sum game between the influencer and an
adversary who chooses the worst case parameters, and present techniques which
provably approximate the minimax strategies. The key challenge is that the al-
gorithm’s strategy space is exponentially large, while the adversary’s is infinite.
We give a polynomial time primal-dual algorithm, as well as DOSIM, a more
practical algorithm based on a double oracle approach. DOSIM uses a greedy
algorithm as the inner oracle for the influencer. DOSIM also handles execution
uncertainty. We then extend these techniques to the dynamic setting by show-
ing that DOSIM’s greedy oracle still gives excellent empirical performance. Our
approach is evaluated on real world social networks of homeless youth in a large
U.S. city. We show that it produces policies which perform near optimally re-
gardless of the unknown parameters, while failing to consider this uncertainty
results in substantially worse performance.

Our algorithm has been piloted by a homeless shelter in a major US city.
A companion paper [20] shows results and detailed analysis from a pilot test of
this and other algorithms at homeless shelters in a major US city, and shows
the benefits of DOSIM in practical settings. A large-scale deployment of our
algorithm with approximately 300 youth is scheduled to begin in Spring 2017.



2 Dynamic influence maximization

Problem overview: A social network is a directed graph G = (V,E), with
|V | = n and |E| = m, where an edge from u to v indicates that u is a friend of
v. An influencer does the following for T stages (where T is the total number
of interventions). First, she selects a set of K nodes (participants) to attend the
intervention and be influenced. Each node actually attends with an independent
probability. Then, the influencer receives observations about the propagation
probability on each edge outgoing from nodes that did attend, clarifying those
nodes’ immediate social circle. Finally, the influencer selects the next K nodes
and the process repeats. The objective is to maximize the expected number of
influenced nodes at the end of stage T .

Influence model: Influence propagates according to a variant of the stan-
dard independent cascade model [7]. In the independent cascade model, each
edge e = (u, v) is labeled with a probability pe. The vector p contains pe for
each e ∈ E. If u is influenced, it makes one attempt to influence v which suc-
ceeds with probability pe. Each influenced node remains influenced for all stages.
We use a variant where a node tries to influence its neighbor at each stage (un-
til it succeeds), instead of just the first. This has been shown to better match
empirical diffusion patterns [4].

It has been observed in many domains [1, 9] that the likelihood of influence
spread depends largely on the kind of relationship. To model this phenomenon,
each edge e ∈ E has a type θe drawn from a set Θ. In our example, homeless
shelter officials can annotate the edges as being either strong or weak ties. Each
type θ ∈ Θ is associated with a prior distribution over propagation probabilities
and each edge e independently samples pe from the prior for θe. This is a natural
framework for our domain because organizations cannot provide accurately es-
timate each pe, but they may classify the edges into types. We focus on uniform
priors but our work can be extended to other distributions. We will assume a
fixed width w for each uniform prior and overload notation to let θe give the cen-
ter of the distribution. Hence, each edge samples pe ∼ U [θe − w

2 , θe + w
2 ], where

U denotes a uniform distribution. The vector θ contains θe for each e ∈ E.

Observation model: The influencer receives observations at each stage as
she asks participants (nodes) about their immediate social circle. Importantly,
it is not possible to ask participants for the exact pe. Instead, the influencer
only learns proxies for this probability, such as how frequently the participant
interacts with the other person. We abstract this feedback as updates relative to
the prior. For example, if e = (u, v) and u and v interact more often than typical
acquaintances, then we would infer that pe is on the upper end of the prior θe.
Accordingly, for each outgoing edge e, we assume that the algorithm observes
the quantile of pe relative to θe.

Example 1: If θe = 0.3 and w = 0.4, then our prior distribution would be
pe ∼ U [0.1, 0.5]. If frequent interaction was observed, then the influencer would
infer that pe lies in the upper quantile of the prior, and the updated posterior
distribution would be U [0.3, 0.5].



Objective formalization: Our algorithm starts with an input consisting of
a graph G (with all nodes uninfluenced) and prior parameters θ. Unknown to
the algorithm, the vector of edge propagation probabilities p is drawn from the
factorized prior described by θ. At each stage t ∈ [1, T ] the algorithm picks an
action St from the set A = {S ⊂ V s.t. |S| = K}. Each node v ∈ St attends with
an independent probability qv, which is known in advance. qv models execution
uncertainty. The algorithm then receives an observation Ot containing each out-
going edge from the subset of St that attended, which allows it to update its
posterior distribution over the edge probabilities. The algorithm’s state is given
by the actions taken and observations received so far, {(S1, O1)...(St, Ot)}. A
policy π is a mapping from states to actions, and hence specifies the action to
take in each stage of the problem. Let f(π,p) be the expected number of nodes
influenced by π by the end of stage T when the propagation probabilities are p3.
f can be evaluated by averaging over random samples of the influence process
[7, 16]. Our goal is to find a policy which maximizes Ep∼θ[f(π,p)].

3 Uncertainty

Thus far, our model contains uncertainty about the realized value of the proba-
bility pe given its expectation θe. This reflects variance in the distribution, and
is captured via w (the width of the support of the prior over pe). This uncer-
tainty is important in the dynamic setting, because w controls the amount of
information which can be gained via observations. For instance, if w = 0, then
the prior for any edge is a point distribution and subsequent observations cannot
reveal anything new. However, if w = 0.4, then the posterior mean on a given
edge will shift by 0.1 if the algorithm observes whether pe for that edge lies in
the top or bottom quantile.

On its own, though, placing a distribution over pe is inadequate in the fol-
lowing sense. As noted by He and Kempe [6], distributional uncertainty does not
impact the average behavior of the model. This is because the following processes
are analytically equivalent: (1) draw pe ∼ U [θe− w

2 , θe + w
2 ] and then propagate

influence with probability pe (2) propagate influence with probability θe. That
is, in the classical influence maximization problem, placing a distribution over pe
is no different from setting pe deterministically to its mean θe. Simply increasing
the width w does not change this: the priors pe ∼ U [0.4, 0.6] and pe ∼ U [0.2, 0.8]
both imply that edge e will propagate influence with probability E[pe] = 0.5.
While distributional uncertainty does have a role in our dynamic problem be-
cause we allow the influencer to learn more about the realized values, it is not
sufficient to capture uncertainty about the average likelihood that influence will
spread. For instance, the influencer may know that pe is drawn from the “strong
tie” prior, but this will mean entirely different things if a strong tie has θe = 0.1
than if θe = 0.9. In domains such as HIV prevention, we will not know what θe
should be set to because, e.g., we do not know the average probability that one
friend will be able to convince another to get tested for HIV.

3 All of our techniques also apply to an infinite time horizon with discounted rewards.



We thus consider a second, higher-order uncertainty over the value of θ. We
assume interval uncertainty, that is, θ ∈ [aθ, bθ] ∀θ ∈ Θ. Since the influencer
never learns the true value of θ, our goal is to produce an algorithm which
simultaneously performs well for all possible values of θ. Robustness to this
second kind of uncertainty is what was considered by Chen et al. [3] and He and
Kempe [6]. The key difference from the first level of uncertainty is that we do not
have a distribution over [aθ, bθ]. This leads to an adversarial model, requiring
robustness to a worst-case choice of θ [6]. A worst-case approach is further
motivated by the fact that organizations may not be able to quantify higher-
order uncertainty, i.e., provide a prior over the prior parameters. In short, we
have a more expressive model to represent two levels of uncertainty. The following
example shows how the entire model works together, incorporating both levels
of uncertainty and our observation model.

Example 2: Suppose that for some edge e, our interval uncertainty on θ
gives θe ∈ [0.2, 0.8] and w = 0.4. If the actual value is θe = 0.2, then this would
imply that pe ∼ U [0.0, 0.4]. If instead the value is θe = 0.6, then we would have
pe ∼ U [0.4, 0.8]. Similar distributions are implied for every θe contained in our
uncertainty interval [0.2, 0.8]. The influencer does not know which distribution
is the true one. However, suppose she observes that pe is in the upper quantile
of the prior. Then in the case that θe = 0.2, the updated posterior would be
pe ∼ U [0.2, 0.4], and in the case θe = 0.6, the posterior would be pe ∼ U [0.6, 0.8]
(and so on). The influencer still does not know the true value of θe. But she now
knows that (whatever it is) pe lies in U [θe, θe + w

2 ].
When our problem contains only the first level of uncertainty (about the

realized value of pe), we call this the known parameter case (as the key parame-
ters θ are known). When the second level of uncertainty is also present, and we
are hence uncertain about θ, we call this the robust case. Our objective for the
robust case is formalized in Section 5.

4 Related Work

We discuss work on two related topics. First is work which deals with parameter
uncertainty in classical influence maximization. Two recent papers [3, 6] analyze
a similar model of parameter uncertainty, where the parameter for each edge is
chosen adversarially within an interval. In their model, the edge parameters are
totally independent. However, due to the domains we consider, we assume that
edges belong to a small number of types. Therefore, our models are not directly
comparable, and in particular the hardness result proved by He and Kempe
[6] does not apply (we elaborate in Section 5). Further, neither of [3, 6] have a
dynamic component, which is a key feature of our domain. Independently, several
recent papers deal with learning influence networks [5, 11]. All of these papers
assume that the algorithm observes many independent influence cascades, so our
contributions are largely orthogonal to learning based approaches.

Second is work by Yadav et al. [19, 18] on applying dynamic influence maxi-
mization to HIV prevention. This is the most closely related work to ours, and



hence Section 7 empirically compares our algorithm and theirs. Yadav et al. for-
mulate the problem as a POMDP. Our contributions extend their work in two
ways. First, unlike their work, we address the robust case by giving an algo-
rithm which is provably robust to parameter and execution uncertainty. Second,
for known parameters, we show that dynamic influence maximization can be
solved by a greedy algorithm instead of POMDP and that only greedy scales
beyond small networks.

5 Robustness to parameter uncertainty

We start by showing how to obtain robust results under parameter uncertainty.
For ease of explanation, we focus first on the nondynamic setting where the
algorithm picks a single seed set in the first stage instead of a multistage policy.
We also defer consideration of execution uncertainty and assume qv = 1 ∀v ∈
V . When there is no parameter uncertainty, Kempe, Kleinberg and Tardos [7]
showed that a greedy algorithm obtains a (1−1/e) approximation to the optimal
value because the objective function is submodular. We now show how to extend
this approximation to a robust optimization over uncertain parameters.

Recall that we assumed interval uncertainty over the key parameters θ, that
is, θ ∈ [aθ, bθ] ∀θ ∈ Θ. The influencer’s goal is to find a seed set S ∈ A which
leads to near-optimal influence spread no matter where each entry in θ lies within
its interval. Our full model also includes lower-order uncertainty concerning the
realized value of p given θ. Since we focus for now on a single stage, the influencer
does not receive observations about the realized p. Thus (as noted in Section 3),
the lower-order uncertainty is irrelevant because distributional uncertainty over
p can can be removed via setting p to its mean. This lower order uncertainty
becomes relevant when we extend our algorithm to the dynamic setting in Section
6.

First, we formally define our objective. For each S ∈ A, let gS(θ) give the
expected influence spread of seed set S with priors θ. Let the set of possible θ be
P = {θ |θe ∈ [aθe , bθe ] ∀e ∈ E}. P is the m-dimensional box where each θe may
lie anywhere within the interval for that type. Let the optimal influence spread
for each θ be gOPT (θ) = maxS gS(θ). The influencer’s utility for choosing seed
set S when the parameters are θ is

R(S,θ) =
gS(θ)

gOPT (θ)
,

which quantifies the value that the influencer received compared to the op-
timum. This objective was also discussed by He and Kempe [6] and Chen et al.
[3]. Since gOPT is NP-hard to compute exactly, R cannot be efficiently evalu-
ated. However, we can compute a greedy approximation gG to the optimal value.
Hence, we follow [3, 6] and instead optimize

RG(S,θ) =
gS(θ)

gG(θ)
.



This compares the influence spread of S to the value which would have been
obtained by greedy. Note that R(S,θ) ≤ RG(S,θ) ≤ e

e−1R(S,θ), so RG is
always within a constant factor of R. A randomized algorithm for the influencer
is a vector x ∈ ∆|A| (where ∆n denotes the n-dimensional probability simplex)
giving the probability of selecting each seed set. As explained in Section 3, we
take a worst-case approach to maximizing RG. Hence, we seek the strategy x∗

which maximizes the minimum value:

x∗ = arg max
x∈∆|A|

min
θ∈P

∑
S

xSRG(S,θ). (1)

This problem can be viewed as a zero-sum game between an influencer, who
chooses the seed set S ∈ A, and an adversary (nature), who chooses the param-
eters θ ∈ P. The influencer’s payoff is given by RG(S,θ). Since we solve for a
mixed strategy for the influencer, our algorithm is randomized: the influencer
samples a pure strategy each time she wishes to choose a seed set. Randomiza-
tion is necessary to guard against weakness to a particular set of parameters
(a player in a game may be exploited if they commit to a deterministic strat-
egy). However, it is possible that an influencer might prefer a pure strategy with
a lower but “guaranteed” payoff to a probabilistic strategy which has a small
chance of yielding very bad utility. In this case, it suffices to express the payoffs
of our game through a risk aversion function and then solve the game normally
using the algorithms described below; this will yield a desired guaranteed payoff.
In practice, our proposed algorithm produces strategies with very sparse sup-
port; the few non-zero components all have comparable worst-case value so this
problem does not arise.

We now introduce our techniques for solving the game. Normal methods do
not apply because A (the set of all sets of K nodes) is exponentially large, while
P (the set of all allowable parameter values) is infinite. However, we demonstrate
that both sources of intractability can be overcome and present a constant-factor
approximation to the minimax robust solution in polynomial time. Recall that
a mixed strategy x is a vector giving the probability of choosing each seed set.
Our approximation notion is as follows:

Definition 1. An algorithm produces an (α, ε)-minimax robust solution if it
always returns a mixed strategy x satisfying

min
θ

∑
S

xSRG(S,θ) ≥ αmax
x′

min
θ

∑
S

x′SRG(S,θ)− ε.

We first tackle the adversary’s infinite strategy space by showing that this
space can be reduced to a discrete set P∗ such that the adversary loses only
an arbitrarily small ε by choosing from P∗ instead of P. Recall that P has
infinite size because it is the continuous set of all allowable parameter values.
For example, if we have types corresponding to strong and weak edges, P could
be the set of parameters which places the θe for strong edges anywhere in the
continuous interval [0.4, 0.8] and the θe for the weak edges anywhere in the



interval [0.2, 0.4]. There are no general approaches for solving games with infinite
strategy spaces, so we show how to reduce our original game to one with a
finite set of adversary strategies. The challenge is to ensure that only a small
amount of approximation error is incurred in the reduction. Towards this goal,
the main technical step is to prove that each gS is sufficiently smooth for such a
discretization to be possible. It is not immediately clear that gS should always
be smooth. For instance, in a complete graph, gS rapidly increases from 0 to
n even at a very small propagation probability because of the combinatorial
number of potential paths (this is related to the emergence of a giant connected
component in Erdős-Rényi graphs). However, Lemma 1, stated below, shows
that gS is smooth for any fixed size graph. Lemma 2 will then use Lemma 1 to
show that there is a discretization P∗ where |P∗| scales reasonably.

Lemma 1. For any gS, S ∈ A, (or gG) and any θ1,θ2 ∈ P, |gS(θ1)−gS(θ2)| ≤
nT ||θ1 − θ2||1.

Due to space restrictions, all proofs are deferred to the supplemental material.
In Lemma 2, we use Lemma 1 to construct a P∗ which ensures that the loss
incurred by discretizing is at most ε. The idea is as follows. Suppose we cover
the hyperrectangle of allowable type values ×θ[aθ, bθ] with a regular grid. Let
our discretization P∗ ⊂ P be the set of θ which correspond to the grid points
(by setting each θe to its value at the point). Then we have:

Lemma 2. Fix ε > 0, and construct P∗ using a grid with
(
2nmT
ε

)|Θ|
points.

Then for any seed set S ∈ A and any point θ ∈ P there is a θ∗ ∈ P∗ satisfying
|RG(S,θ)−RG(S,θ∗)| ≤ ε.

Although |P∗| is exponential in |Θ|, we assume that |Θ| is a small constant
because organizations can only provide a small number of edge types. Moreover,
this exponential dependence is likely unavoidable since when |Θ| = m, we recover
a model for which He and Kempe [6] showed even approximating the minimax
robust strategy is NP-hard. By reducing the adversary’s pure strategy space to
a finite set P∗, Lemma 2 allows us to formulate the minimax robustness problem
as the following LP:

Primal: Dual:

max
x∈R|A|

U s.t. min
y∈R|P∗|

W s.t.∑
S∈A

xS = 1
∑
θ∈P∗

yθ = 1

xS ≥ 0 ∀S ∈ A yθ ≥ 0 ∀θ ∈ P∗

U ≤
∑
S∈A

xSRG(S,θ) ∀θ W ≥
∑
θ∈P∗

yθRG(S,θ) ∀S (2)

The primal is intractable due to the exponential number of variables. How-
ever, since P∗ has size poly(n,m, 1ε ), we can instead work with the dual. Al-
though the dual has exponentially many constraints, all that we need to ensure



polynomial time solvability is a separation oracle which checks if Constraint 2
is violated for any S. This reduces to finding the ”tightest” constraint; i.e., the
seed set S which maximizes the expected value of RG under the adversary mixed
strategy y. We want to compute

max
S∈A

∑
θ∈P∗

yθRG(S,θ) = max
S∈A

∑
θ∈P∗

yθ
gG(θ)

gS(θ)

Note that the term yθ
gG(θ) is independent of the seed set S which we choose;

it is just a nonnegative coefficient. Further, computing maxS∈A gS(θ) is the
problem of finding the most influential seed set for the fixed parameters θ, which
is a submodular maximization problem. Since a nonnegative linear combination
of submodular functions is itself submodular, greedy can be used to find an
approximately tightest constraint:

Lemma 3. For any adversary mixed strategy y ∈ ∆|P∗|, running greedy with the
objective maxS∈A

∑
θ∈P∗

yθ
gG(θ) Ep∼θ[f(·,p)] produces a (1 − 1/e)-approximate

best response to y.

This is exactly what we need to check Constraint 2 since a particular setting of
y corresponds to an adversary mixed strategy, so Constraint 2 is violated if and
only if the best response to y has expected RG higher than W . Although greedy
may not always detect violated constraints, we show that the ellipsoid algorithm
can still be used to approximately solve the dual, and that we can then recover
an approximate solution to the primal.

Theorem 1. There is an algorithm which obtains an (1−1/e, ε)-minimax robust
solution to the robust influence maximization problem in time poly(m,n, 1ε ).

A practical algorithm: Theorem 1 accomplishes our goal of providing
a polynomial time approximation algorithm. However, this algorithm is likely
impractical since the ellipsoid algorithm is known to perform poorly. Moreover,
the strategy returned could be quite large (although polynomial). While we view
the construction of a polynomial time approximation algorithm as an important
theoretical contribution, we also present a practical algorithm using a double
oracle approach [10]. DOSIM (Double Oracle for Social Influence Maximization)
solves the game using best response oracles for each player. Initially, both players
choose only from a small set of arbitrarily chosen pure strategies (lines 1-2 of
Algorithm 1). At each iteration, we compute the minimax mixed strategies as-
suming the game is restricted to just the current strategy set (line 5). The payoff
matrix of this restricted game is given by RG(S,θ) for each pair of strategies
S ∈ Ai,θ ∈ Pi contained in the current strategy sets. Then, we find the best
response of each player to their opponent’s mixed strategy (lines 6-7). If either of
these responses is not in the corresponding strategy set, the new entry is added
and the algorithm proceeds. If both strategies are present, the algorithm termi-
nates with a provably optimal solution. While double oracle is well known [10], it



Algorithm 1 DOSIM

1: A0 = arbitrary seed set
2: P0 = {( 1

2
, 1
2
..., 1

2
)}

3: i = 0
4: while Ai 6= Ai−1 or Pi 6= Pi−1 do
5: xi, yi = SolveLP(Ai,Pi) //Solve restricted game
6: Ai+1 = Ai ∪ {InfluencerBestResponse(yi)}
7: Pi+1 = Pi ∪ {AdversaryBestResponse(xi, ε)}
8: i = i+ 1
9: end while

10: return SolveLP(Ai,Pi)

is not an out-of-the-box approach. Our contribution is constructing appropriate
oracles for robust influence maximization:

Influencer oracle: Run the greedy algorithm on the objective given by
the current adversary strategy y. Lemma 3 shows that greedy is a (1 − 1/e)-
approximate oracle.

Adversary oracle: Search P∗ and choose the parameters θ ∈ P∗ which
minimize

∑
S∈Ai−1

xSRG(S,θ). By Lemma 2, this approximates the adversary’s
best response to within an additive ε.

Hence, we can provide an approximation guarantee for the best response
oracle for both players. McMahan et al. [10] showed that when double oracle is
given an optimal best response oracle for each player, the strategies it returns
form an equilibrium of the game. We now generalize this reasoning to show that
approximate best response oracles yield an approximate equilibrium. We say
that mixed strategies x and y form a c-approximate Nash equilibrium if neither
player can gain more than a multiplicative factor c by deviating.

Theorem 2. If double oracle is given an α-approximation to the best response of
Player 1 and a β-approximation to the best response of Player 2, on termination
it returns strategies which form a max{ 1α ,

1
β }-approximate Nash equilibrium.

By taking β = 1 and accounting for the additive loss of ε introduced by
discretizing the adversary’s strategy space, we get:

Corollary 1. DOSIM obtains a (1− 1/e, ε)-minimax robust solution to the ro-
bust influence maximization problem.

DOSIM may run in exponential time (since it may need to add all pure
strategies in the worst case). However, we see in Section 7 that it converges
quickly in practice and so Corollary 1 provides guaranteed solution quality.

Robustness to execution uncertainty: Recall that each node v is present
with probability qv. To illustrate the implication for the optimal strategy, sup-
pose that there are two very influential nodes u and v with qu = qv = q whose
neighborhoods entirely overlap. Clearly, we should only select one of the two if
q is high. However, if q is low, we might select both to ensure that we reach



their large set of neighbors. We create a new graph G′ to represent this tradeoff
as follows. For each node v ∈ V , add a new “designer” node v′, which has a
single edge (v′, v). This edge has a new type θd whose prior outputs pv′,v = 1
with probability θd = qv and pv′,v = 0 otherwise. If actions are restricted to the
designer nodes, i.e., A = {{v′1, v′2, ...v′K}|vi ∈ V }, then maximizing influence in
G′ exactly corresponds to maximizing influence under execution errors in G. We
can also incorporate our higher-level uncertainty by allowing θd to be adversar-
ially chosen within an interval. Therefore, we can compute a seed set which is
robust to an adversarially chosen θd by running DOSIM on G′.

6 DOSIM in the dynamic setting

We now extend DOSIM to the dynamic setting, where we seek a multistage
policy instead of a seed set. Recall that a policy selects a set of nodes at each
stage conditioned on observations from earlier stages. We will show how to find
a policy which is robust to uncertainty over the prior θ. When we seek a robust
policy, observations give a quantile of the prior but do not fully specify the
posterior since the exact prior is unknown. E.g., if θe ∈ [0.2, 0.7] and w = 0.2,
the prior could be either U [0.2, 0.4] or U [0.5, 0.7] and an observation of “top
half” implies a posterior of either U [0.3, 0.4] or U [0.6, 0.7]. Our algorithm uses
this information while remaining robust to the higher-level uncertainty over θ.
Recall that the lower-level uncertainty cannot be replaced by setting pe = θe
anymore because the algorithm receives observations about the realized value.

DOSIM translates naturally into the dynamic setting. Specifically, our scheme
for discretizing the adversary’s strategy space (Lemmas 1 and 2) generalizes to
the case where the influencer chooses a multistage policy instead of a single seed
set (see supplemental material for proof). Thus, our adversary oracle, and its
theoretical guarantees, are unchanged. Theorem 2 applies to any zero-sum game,
and hence implies that if we can supply an influencer oracle for the dynamic
setting, then running DOSIM with this oracle will produce robust policies.

Unfortunately, supplying an influencer oracle with guaranteed approximation
ratio is difficult; there are no known theoretical guarantees for dynamic influence
maximization because the objective function is not adaptive submodular. Yadav
et al. [18] proved this for their DIME model, which our model generalizes. Our
approach is to use a heuristic oracle and show experimentally that it produces
good influence spread. This is sufficient to ensure that we obtain robust results
on real world problems since DOSIM performs well on a particular network so
long as its influencer oracle does:

Lemma 4. If the influencer oracle achieves an α-approximation for any θ ∈ P∗
on a given G, then DOSIM provides an (α, ε)-minimax robust solution on G.

Essentially, we can be sure that DOSIM’s solution is robust if the oracle
performs well on our particular network since DOSIM preserves the quality of
its input oracle. We now turn to finding an appropriate heuristic for the influ-
encer oracle. One natural idea would be to use the current state of the art for



dynamic influence maximization, the POMDP based heuristic algorithm HEAL
[18]. However, HEAL is unsuitable for two reasons. First, our model is more gen-
eral than HEAL’s. Specifically, HEAL cannot represent the pe as being drawn
from an interval. Second, we show experimentally that HEAL is not scalable and
is hence unsuitable as a subroutine which will be called many times by DOSIM.
Hence, we use an alternative heuristic oracle, presented on below.

Algorithm 2 Dynamic greedy

1: Sprev = ∅ //nodes selected in previous stages
2: O = ∅ //set of all observations
3: for t← 1 to T do
4: St = ∅ //nodes selected in this stage
5: for i← 1 to K do
6: v∗ = arg maxEp[f(Sprev ∪ St ∪ {v},p)
7: −f(Sprev ∪ St,p)|O]
8: St = St ∪ {v∗}
9: end for

10: Influence St; Update Sprev = Sprev ∪ St

11: Receive observation Ot; Update O = O ∪Ot

12: end for

When examining Algorithm 1, our extension of DOSIM to the dynamic set-
ting only needs to supply an influencer oracle (line 6). The rest of DOSIM is
completely unchanged because we can use the same adversary oracle. For the
influencer oracle, which best responds to an adversary mixed strategy y, we will
use a dynamic version of the greedy influence maximization algorithm, described
in Algorithm 2. The dynamic greedy algorithm operates greedily on two layers.
In each stage (line 3), it chooses the set of K nodes which maximize the im-
mediate gain in influence spread, conditioned on the observations gathered thus
far. However, since finding this set is essentially a classical influence maximiza-
tion problem (and hence NP-hard), we use a further greedy selection process
to approximate the optimal set of K nodes for each stage. Line 5 selects the
node v∗ which maximizes the expected marginal gain. The expectation is over
parameters θ sampled from the adversary mixed strategy y, and propagation
probabilities p sampled according to θ. After identifying these K nodes, the al-
gorithm marks them as influenced and simulates new observations (lines 10-11).
We can repeatedly simulate different sets of observations (repeating line 10) to
build up the best response policy.

7 Experiments

We present experimental results for our example domain, preventing HIV spread
in homeless youth. We use two datasets (Network A and Network B) collected
by homeless shelters using surveys and interviews [18]. Both have 140-170 nodes



2 3 4 5 6
K

0

40

80

120

160

In
flu

e
n
ce

 s
p
re

a
d DOSIM

HEAL
DC

2 3 4 5 6
K

0

40

80

120

160

In
flu

e
n
ce

 s
p
re

a
d DOSIM

HEAL
DC

Fig. 1: Influence with varying K on Net-
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and 300-400 edges. We also show results on artificial Watts-Strogatz networks
(model parameters p = 0.1, k = 7, all results averaged over 30 networks), since
these mirror our datasets’ small diameter.

Dynamic influence maximization with known parameters:

The most closely related work is the HEAL algorithm [18], so we begin by
setting up a comparison between DOSIM and HEAL. HEAL only handles the
known parameter case, where only the lower order uncertainty over the realized
value of p is present. Thus, we run DOSIM assuming that the adversary strategy
is fixed to a single, known θ. Our results validate the even when only lower-level
uncertainty is present, DOSIM still outperforms the closest competitor.

Our model is more general than HEAL’s, so we align the models as follows.
There is one type of ”certain” edges with fixed pe = p, and one type of ”uncer-
tain” edges which have pe = p with probability u and pe = 0 with probability
1−u. We give DOSIM the same observations as HEAL by revealing whether an
edge is in the top 100·u% of the prior or bottom 100 · (1− u)%. Figure 1 shows
the influence spread of both algorithms on the two real networks as we vary the
intervention size K (fixing T = 5, p = 0.6, u = 0.1 as in [18]). We also compare
to picking nodes with the highest degree centrality (DC), since this is standard
in health policy [17]. The maximum intervention size is K = 6 since the shelter
cannot accommodate more participants. We see that DOSIM and HEAL per-
form very similarly, while DC performs poorly (and is omitted hereafter). Table
1 shows the percentage gain of DOSIM over HEAL as the parameters u and p
are varied (for K = 2, T = 10) for Network A (Network B is similar). DOSIM
performs no more than 4% worse, and up to 25% better. Overall, the influence
obtained by DOSIM is comparable to HEAL, and sometimes better.

However, only DOSIM is scalable. Figures 2 shows runtime on Network A and
Watts-Strogatz networks. DOSIM performs better on larger graphs. For T = 10
on Network A, it is roughly 2.5 times faster. On Watts-Strogatz networks with
500 nodes, DOSIM finishes in about 8 minutes while we cut off HEAL’s execution
after 5 hours. For networks larger than 500 nodes, HEAL runs out of memory.
Both algorithms were run on a 2.33 GHz Intel processor with 48 GB of RAM.

Robustness: We now investigate the performance of the full DOSIM al-
gorithm when we have interval uncertainty over θ. Shelter officials annotated
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Table 1: % gain over HEAL with
varying parameters

Network A Network B0. 5

0. 75

1

R
G

DOSIM DOSIM-fixed DOSIM-SE
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the edges as being either strong or weak ties, so we have two corresponding
types. We add a third type for the designer edges reflecting execution uncer-
tainty. A uniform prior is adversarially chosen for the first two types, using
width w = 0.4 (truncated if the support would exceed [0,1]). We allow any mean
θstrong ∈ [0.2, 0.8] and θweak ∈ [0, 0.4]. These ranges contain the parameters used
in previous work [18], but are large enough to represent our considerable un-
certainty. We allow any θd ∈ [0.2, 0.8]. Observations specified whether outgoing
edges were in the bottom or top quantile of the prior. K = 4 nodes were selected
in each of T = 5 stages with ε = 0.1. We compare DOSIM to two benchmarks.
Since no previous work (including HEAL) handles both levels of uncertainty
simultaneously, our benchmarks run DOSIM with a fixed adversary strategy.
“DOSIM-fixed” uses fixed parameter settings reported previously (θstrong = 0.6,
θweak = 0.05) without considering execution uncertainty (θd = 1). “DOSIM-SE”
uses the same settings for θstrong and θweak, but also accounts for stochastic ex-
ecution uncertainty by setting θd = 0.5 (based on shelter officials’ experience).
These two algorithms assume a single allowable point value for θ. Figure 3 shows
the worst case ratio RG (over all allowable parameter values) on the y axis for
DOSIM and the benchmarks. DOSIM obtains approximately 90% of the opti-
mal value across all parameter settings while using fixed parameters leads to
substantially worse performance (about 72% in the worst case). Incorporating
execution uncertainty results in a value roughly halfway in between. Lastly, we
note that on both datasets, DOSIM converges rapidly (within 13 iterations).

8 Conclusion

We address dynamic influence maximization under uncertainty about both the
network parameters and the efficacy of interventions. First, we give algorithms
with provable guarantees for minimax robustness under unknown parameters.
Second, our algorithm handles execution uncertainties. Third, we extend these
results to the dynamic setting using an experimentally validated greedy algo-
rithm. Lastly, experiments on real world networks collected from homeless youth
demonstrate our approach’s advantages.
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