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Abstract

Evolution’s ability to find innovative phenotypes is an important ingredient in the emergence

of complexity in nature. A key factor in this capability is evolvability, or the propensity towards

phenotypic variation. Numerous explanations for the origins of evolvability have been proposed,

often differing in the role that they attribute to adaptive processes. To provide a new perspective

on these explanations, experiments in this paper simulate evolution in gene regulatory networks,

revealing that the type of evolvability in question significantly impacts the dynamics that follow. In

particular, while adaptive processes result in evolvable individuals, processes that are either neutral

or that explicitly encourage divergence result in evolvable populations. Furthermore, evolvability at

the population level proves the most critical factor in the production of evolutionary innovations,

suggesting that nonadaptive mechanisms are the most promising avenue for investigating and

understanding evolvability. These results reconcile a large body of work across biology and inform

attempts to reproduce evolvability in artificial settings.
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Introduction

Something about the structure of biological systems allows evolution to find new innovations. An

important question is whether such evolvability (defined roughly as the propensity to introduce novel

1



phenotypic variation) is itself a product of selection. In essence, is evolvability evolvable (Pigliucci,

2008)? Much prior work has attempted to encourage evolvability in artificial systems in the hope

of reproducing the open-ended dynamics of biological evolution (Reisinger & Miikkulainen, 2006;

Grefenstette, 1999; Bedau et al., 2000; Channon, 2006; Spector, Klein, & Feinstein, 2007; Standish,

2003). Additionally, biological research has investigated conditions that may be favorable for the

emergence of evolvable structures and explored various mechanisms that could be responsible for

evolvability (Ciliberti, Martin, & Wagner, 2007; Crombach & Hogeweg, 2008; Draghi & Wagner, 2009;

Steiner, 2012; Daniels, Chen, Sethna, Gutenkunst, & Myers, 2008; G. P. Wagner & Altenberg, 1996;

A. Wagner, 2005, 2008a, 2008b; Kirschner & Gerhart, 1998; Sniegowski & Murphy, 2006). Intriguingly,

there is no consensus across this work on whether selection can favor evolvability.

Rather than consensus, a number of different mechanisms for producing evolvability have been

proposed. For example, many experiments have suggested that evolvabilty can be increased by selection

in changing environments (Earl & Deem, 2004; Kashtan, Noor, & Alon, 2007). A common technique

is to vary the target of selection in a modular fashion, leading up to the desired goal (Kashtan & Alon,

2005; Kashtan et al., 2007). Similarly, several studies have proposed incremental fitness functions

that focus on one portion of the task at a time (Mouret & Doncieux, 2008; Urzelai & Floreano, 1999;

Gomez & Miikkulainen, 1997). These experiments suggest that varying the fitness function in this

manner promotes the development of modular building blocks that can be assembled to form better

behaviors than would arise under a static fitness function. A large body of biological work has also

shown that evolvability can be produced by environments that vary over time or space (Draghi &

Wagner, 2009; Crombach & Hogeweg, 2008; Steiner, 2012; Palmer & Feldman, 2011). The main idea

is that if selection sets a moving target, individuals will be more likely to introduce variation in their

offspring to adapt to an uncertain future; mutations to the genotype will accordingly be more likely

to result in phenotypic change.

These results contrast with the success of nonadaptive techniques. For example, the novelty search

algorithm (Lehman & Stanley, 2008, 2011) ignores the objective of an evolutionary search entirely and
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selects only for behavioral diversity. Novelty search has been shown to evolve better neural networks

for tasks such as navigating a maze or controlling a biped walker than conventional evolutionary algo-

rithms, despite the fact that the desired goal is never incorporated into selection (Lehman & Stanley,

2011). These results dovetail with biological studies that emphasize neutral processes that work around

adaptive pressure. Studies by Wagner and other collaborators (A. Wagner, 2005, 2008a, 2008b; Cilib-

erti et al., 2007) emphasize the importance of phenotypic robustness in evolvability. Because many

genotypes map to the same phenotype, a large amount of genetic variation can build up without

changing the phenotype and thereby decreasing fitness. That way, organisms in different parts of the

genotype space, while sharing the same phenotype, can access radically different phenotypes in their

immediate mutational neighborhood. This genetic diversity then allows the population as a whole to

access a wide variety of phenotypes, while avoiding the impact of selection entirely. According to this

line of work, lower levels of phenotypic variation actually promote evolvability. Ebner, Shackleton,

and Shipman (2001) suggest leveraging phenotypic robustness in this manner to improve evolutionary

algorithms.

Another set of results independently question the importance of selection in producing evolvability.

In particular, the limited capacity of environmental niches may be sufficient to produce highly evolvable

individuals. In several such experiments by Lehman and Stanley (2013), there is no selection towards

a preferred phenotype: all niches are equally viable. However, when niches have a limited carrying

capacity, individuals who find previously undiscovered niches benefit from a founder effect, resulting

in an increase in evolvability over time.

These varied perspectives also reflect a lack of clarity on how precisely to define evolvability. The

hypothesis considered in this paper is that a comprehensive theory of evolvability requires distinguish-

ing between evolvable individuals and evolvable populations. On the one hand, evolvable individuals

are more likely than others to introduce phenotypic variation in their offspring. On the other hand,

in evolvable populations a greater amount of phenotypic variation is accessible to the population as

a whole, regardless of how evolvable any individual may be in isolation. This distinction will help
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to disentangle conflicting results and theories on the relationship between evolvability and selection.

In particular, results about selection in variable environments deal with evolvable individuals, while

results based on nonadaptive processes have focused on evolvable populations. It is important to note

that population-level evolvability is not equal to the sum over individual evolvability because the novel

phenotypes contributed by different individuals may be redundant. That is, population-level evolv-

ability measures the extent to which individuals contribute distinct innovations to the pool that is

available to the group.

To understand this distinction, consider that that adaptive pressures have differing effects on the

average individual and the population considered as a whole. In the presence of varying selection,

individuals may gain the ability to yield more diversity to cope with the likelihood of change in the

future. However, the population as a whole could emerge with less ability to explore alternate genetic

paths because adaptive pressure penalizes deviations from the individually optimal strategy. Thus the

population might miss the opportunity for innovations that would have been discovered without such

adaptive pressure. It is therefore natural that introducing an adaptive regime can result in individuals

who produce greater levels of variation, but at a cost to the population. In effect, there is no incentive

for the population to maintain diversity; individuals will tend to cluster around locally optimal points

in the space.

However, selection can mean more than adaptive pressure towards particular phenotypes. Limited-

capacity niches push the population towards greater levels of diversity by rewarding those who in-

troduce novel behaviors. Negative frequency-dependent selection explicitly encourages phenotypic

diversity because uncommon behaviors have greater fitness (Fitzpatrick, Feder, Rowe, & Sokolowski,

2007; Gigord, Macnair, & Smithson, 2001). These forms of selection, which we collectively call diver-

gent selection, could encourage evolvability at the population level by selecting for individuals that

find strategies uncommon in the rest of the population. It should be noted that any form of selection

can be viewed as “adaptive” in the general sense that it rewards individuals for meeting some criteria.

However, the distinction between selective processes that push towards a particular target behavior
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and those that simply encourage diversity is still useful because of their differing consequences (as

this paper will highlight). Therefore, in this paper, selection is called adaptive if it pushes phenotypes

towards a particular target behavior. In contrast, in divergent forms of selection (such as negative

frequency-dependent selection or novelty search), selection does not focus on an externally determined

target. Instead, it depends on the composition of the population in a manner that rewards behavioral

diversity. This difference in terminology is designed to draw a clear rhetorical distinction between the

two forms of selection.

The study in this paper simulates evolution in a gene regulatory network model to demonstrate

the impact of divergent and adaptive selection on evolvability. The simulations span different forms

of environmental change in adaptive regimes, and also cover negative frequency-dependent selection

as an example of divergent selection. The results demonstrate that while adaptive selection produces

evolvable individuals, only divergent selection results in populations that can collectively access the

most nearby variation. A key implication of these experiments is that such population-level evolvability

is the deeper issue at stake in explaining how evolution can produce complexity. Ultimately, individuals

become important to evolution in aggregate through their contribution to the population. The key

question then for the ability of the population to continue to innovate is not whether any individual in

isolation will introduce variation, but what innovations can be found by the population considered all

together. This insight further implies that nonadaptive mechanisms are the more important means for

creating complex evolutionary systems because they produce populations oriented towards innovation.

Experiment

To investigate the implications of different forms of evolvability, evolution is simulated with a model

of artificial gene regulatory networks (GRNs). GRNs have been widely studied because of their foun-

dational role in determining gene activation and the corresponding expression of phenotypic traits.

Several studies in particular have addressed the evolution of evolvability in GRNs, demonstrating both
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the impact of environmental variation and the role of neutral processes (Draghi & Wagner, 2009;

Ciliberti et al., 2007; Steiner, 2012; Crombach & Hogeweg, 2008), thereby establishing their utility in

investigating the mechanisms behind evolvability.

Gene regulation model

We adopt a model of gene regulation proposed by Draghi and Wagner (2009), which is similar to a

broad range of widely used models (Bergman & Siegal, 2003; Azevedo, Lohaus, Srinivasan, Dang, &

Burch, 2006; Siegal, Promislow, & Bergman, 2007; Ciliberti et al., 2007; Steiner, 2012) that originated

with the work of A. Wagner (1996). An individual’s genome is a directed graph consisting of k vertices,

each one representing a transcriptional regulator. Edges between these vertices represent regulatory

influence: positive weights are activating influences, while negative weights are repressing. Weights are

confined in the interval [−1, 1]. The genome is represented by a matrix W , where Wij is the weight of

the edge from gene i to gene j. If no such edge is present, Wij = 0.

The phenotype is a pattern of gene expression produced by this network. Each gene is either active

(1) or inactive (0). A developmental process unfolds wherein the state vector is iterated from an initial

condition in which all genes are active until a fixed point is reached. The vector of states at time t is

S(t), and the expression level of gene i is Si(t). Starting from S(0) = 1, the state is updated according

to

Si(t+ 1) =


1 if

∑k
j=1WjiSj(t) > 0

0 otherwise.

Because each genes expression can take 2 values, at least one configuration must be revisited within

2k time steps. Because the dynamics are deterministic, once a configuration is repeated, the network

will either reach a fixed point S(∞) where S(t+ 1) = S(t) or cycle through a trajectory of states. An

individual is viable if a fixed point is reached, and nonviable otherwise. For computational efficiency,
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individuals are deemed nonviable if no fixed point is found after 500 iterations.

Evolution is simulated with a population of N individuals. The population begins from identical

clones of a single ancestor, and then evolves according to selection and mutation. Each individual’s

fitness is scored according to one of two methods:

In adaptive selection, the individual’s phenotype S(∞) is compared to a target phenotype T . Let

d be the Hamming distance between S(∞) and this target, or the number of genes for which the

expression value differs. Then adaptive fitness can be computed as

FA =
1

(1 + s)d
. (1)

Here, s is a parameter that tunes the strength of selection. Nonviable individuals are assigned d = k+1,

making them less fit than all viable individuals.

In contrast, in divergent selection, individuals are penalized according to the number of others who

share the same phenotype. Let ni be the number of individuals with the same phenotype as individual

i. The corresponding fitness is

FD =
1

(1 + s)ni
. (2)

The manner of selection is the same as for adaptive selection, but individuals are scored exclusively

based on their phenotypic uniqueness instead of comparison to an optimal expression pattern.

Evolutionary simulation

At each generation, N individuals are drawn from the population to reproduce with probability pro-

portional to their fitness. Individuals may be selected multiple times. Each offspring is a clone of its

parent, with some probability of mutation. To make comparisons possible, all populations start from

the distribution of neutral evolution; a founding individual is generated with random values for Wij
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and then 500 mutation steps are performed to allow the weights to equilibrate. In mutation, existing

edges are mutated with probability µ by adding a random variable distributed as N (0, 0.1) to the

weight. Topological mutations are made with probability µA. That is, each existing connection is

removed and each missing connection is added with independent probability µA.

Several different modes of selection are investigated:

1. Static adaptive selection: The target phenotype is set at the start of the run and remains constant

throughout, with fitness assigned according to Equation (1).

2. Fluctuating adaptive selection: The target phenotype changes every p generations, with fitness

assigned according to Equation (1). This mode of selection simulates evolution in a changing

environment. Two types of such changes are explored. First, in random fluctuating selection,

the target is randomly assigned a distinct value. Second, when modularly varying goals (MVG)

are used, only half of the target is changed each time, alternating between T1:k/2 and T(k/2)+1:k.

Thus, the target is modified in a modular fashion, segmented between the two halves of genes.

This scenario replicates the conception of MVG introduced by Kashtan and Alon (2005).

3. Divergent selection: Fitness is assigned according to FD as described in Equation (2). This

regime pressures individuals to achieve previously undiscovered phenotypes.

4. Neutral evolution: No selection is present and the population evolves strictly according to genetic

drift.

Together, these forms of selection capture the major hypotheses that have been proposed on evolv-

ability in the literature.
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Results

Evolution was simulated for 2,000 generations with a population of N = 100 individuals with k = 10

genes. For all runs with selection shown here, s = 1 (varying s does not substantially impact the

results, as shown in Figures S1-S6). Mutation probabilities were fixed at µ = 10−2 and µA = 10−3.

For fluctuating selection, p = 100. Every 200 generations, both the evolvability of individuals and the

evolvability of the population as a whole is recorded.

A variety of definitions and quantifications for evolvability have been proposed (Pigliucci, 2008).

Of ultimate interest is the ability of an individual or population to discover phenotypic variation.

Therefore, a measurement of evolvability should characterize the amount of variability that can be

accessed in an individual or population’s genetic neighborhood. Following Lehman and Stanley (2013),

we measure evolvability by sampling 500 topological mutations for each individual in the population.

An individual’s evolvability is the number of distinct phenotypes that are discovered by this process,

while the evolvability of a population is the number of phenotypes that are discovered by all individuals

combined. Topological mutations are specifically considered because substantively new phenotypes

more often result from structural changes to the regulatory network, which is typically robust to

alterations in the biochemical parameters represented by weights (Von Dassow, Meir, Munro, & Odell,

2000; Ingolia, 2004).

Simulation results confirm that both fluctuating and divergent selection improve individual-level

evolvability. Figure 1 shows the mean individual-level evolvability of the population over 2,000 gen-

erations. Divergent selection produces the highest individual-level evolvability. Fluctuating selection

produces individuals that are the next most evolvable, more so than static selection or neutral evolution.

This result is consistent with numerous findings documenting the beneficial impact of environmental

variation on evolvability (Earl & Deem, 2004; Kashtan et al., 2007; Draghi & Wagner, 2009; Crom-

bach & Hogeweg, 2008; Steiner, 2012; Palmer & Feldman, 2011). Neutral evolution’s low level of

evolvability can be attributed to the number of nonviable phenotypes which are encountered: fully
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Figure 1: Individual-level evolvability. 500 replicate runs of the simulation are averaged for each mode
of selection. Error bars are bootstrapped 99% confidence intervals.

55% of topological mutations of members of the neutrally evolved population resulted in a nonviable

phenotype. All other modes of selection guide the population towards regions of the genotype space

containing valid networks. As a result, only about 8% of mutations resulted in a nonviable phenotype

for all modes except neutral evolution.

However, the results are dramatically different for population-level evolvability. As shown in Figure

2, divergent selection leads to the highest degree of evolvability again, though now by a higher margin.

However, fluctuating selection actually results in equal or marginally lower levels of evolvability than

neutral evolution (the difference is not statistically significant in all generations). Even when the popu-

lation is placed in a changing environment, pressure towards particular targets prevents the population

from accessing some phenotypes. That is, even though the average individual subject to fluctuating

selection will tend to produce a greater degree of phenotypic variation than one subject only to genetic
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Figure 2: Population-level evolvability. 500 replicate runs of the simulation are averaged for each mode
of selection. Error bars are bootstrapped 99% confidence intervals.

drift, the population as a whole has fewer innovations available within its mutational neighborhood.

Static selection unsurprisingly displays the lowest degree of population-level evolvability, reflecting the

pressure for the population to remain within a single region.

This population-level difference can also be seen in the level of genetic diversity within the pop-

ulation under different modes of selection. Figure 3 shows the mean Euclidean distance between

individuals in the genotype space. The distance between two individuals with weight matrices A and

B is

√√√√ k∑
i=1

k∑
j=1

(Aij −Bij)
2

(3)

and Figure 3 plots the mean of this quantity over all pairs of individuals in the population. Adaptive
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selection, either static or fluctuating, results in a low level of diversity. Fluctuating selection, despite

producing much more evolvable individuals and populations, results in slightly less diversity than

static selection. That is, the difference in diversity is very minor, and so static selection’s higher

diversity is not enough to contribute a substantial number of new phenotypes. For both cases, the

restriction imposed on the population by the presence of adaptive selective pressure in the first place

prevents a level of diversity that is even comparable to neutral evolution. Even though each individual

in fluctuating evolution has access to a greater number of phenotypes than under neutral evolution,

the population as a whole tends to be clustered around more similar areas of the genotype space

that give the optimal ability for each individual’s descendants to adapt to changing circumstances.

However, this redundancy in the distribution of genotypes prevents the population from accessing

areas that are less lucrative for the individual but that nevertheless contribute new phenotypes to

the set accessible by the population. Results from Ciliberti et al. (2007) confirm that accessing the

majority of possible phenotypes requires individuals to be located in widely varying portions of the

genotype space. Therefore, it is natural that adaptive selection pressure should limit the evolvability

of the population.

Divergent selection produces a higher level of diversity than any mode of adaptive selection. Inter-

estingly though, the relative gap between divergent selection and other modes of evolution is narrower

in terms of genetic diversity than population-level evolvability. That is, evolvability is not directly

proportional to diversity. The implication is that the population under divergent selection is steered

towards particular regions of the space from which a large number of phenotypes are accessible. While

individuals are still more dispersed than under adaptive selection, the success of divergent selection

does not rely on individuals inhabiting wildly different areas of the genotype space. Instead, divergent

selection maintains diversity that is concentrated in promising areas. This observation accords with

findings by Lehman, Stanley, and Miikkulainen (2013) that maintaining genetic diversity alone is not

sufficient to increase performance in deceptive domains such as maze navigation. That is, genetic di-

versity alone does not translate directly into an evolvable population. It is crucial that the population
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Figure 3: Genetic diversity in the population. Values represent the mean Euclidean distance between
individuals in the genotype space. 500 replicate runs of the simulation are averaged for each mode of
selection. Error bars are bootstrapped 99% confidence intervals.

also be located in genetic regions that lend themselves to the discovery of new phenotypes.

Discussion

The experimental results highlight the need to distinguish carefully between different senses of evolv-

ability. Processes that produce evolvable individuals may be counterproductive when evolvable popu-

lations are at issue and vice versa. While divergent selection can bring about evolvability at both levels,

more traditional forms of adaptive selection are effective only at producing evolvable individuals.

This insight helps reconcile conflicting proposals for reproducing evolvability in artificial systems.

A large body of literature (Earl & Deem, 2004; Kashtan et al., 2007; Kashtan & Alon, 2005; Mouret
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& Doncieux, 2008; Urzelai & Floreano, 1999; Gomez & Miikkulainen, 1997) has focused on explicitly

selecting for greater evolvability through variation in the fitness function. On the face of it, there is a

tension between this work and methods that generate behavioral diversity instead of setting a single

objective for the entire population. Such divergent processes fundamentally allow the population to

access more variation, because it is the group, not a single individual, that diffuses through the set of

genotypes and discovers widely varying phenotypes in different portions of the space. However, the

tension disappears once it is made clear which sense of evolvability is under consideration. Popula-

tions become evolvable when greater exploration is promoted, and individuals become evolvable when

selection is for phenotypic variation.

These observations highlight the importance of population-level evolvability. Evolution is inher-

ently a process that operates at the level of the population, while the evolvability of an individual in

isolation affects only the fitness of its descendants. Questions about how computational systems can

emulate the open-ended nature of biological evolution are thus addressed more comprehensively by

the characteristics of the population as a whole. Even if each individual in a population has a number

of phenotypes accessible via mutation, the potential for innovation is limited if these new phenotypes

are largely the same. Diversity is important to evolution insofar as different individuals contribute

different possibilities for future development. One implication is that research on producing evolu-

tionary complexity can benefit from looking past traditional modes of selection. Other processes with

less focus on adaptation are essential to innovation because new discoveries require the population to

explore new possibilities instead of being directed narrowly by the constraints of fitness.

Our understanding of divergent selection continues to improve. Future work can investigate how

the genotype-phenotype mapping interacts with selective pressures. It is important to understand

the mechanisms through which divergent selection locates portions of the genotype space with access

to a wide variety of phenotypes. This work could help characterize the properties of such regions,

for example by identifying topological features that are common in highly evolvable networks. Be-

yond divergent selection as considered here, another promising direction for future work is to identify
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additional nonadaptive mechanisms that shape the emergence of evolvability.

Conclusion

This paper compared evolvability at the level of the individual versus the population, a distinction that

underlies disagreements in previous work on creating evolvable systems. Experiments with simulated

evolution in gene regulatory networks showed that evolvable individuals are produced by adaptive

selection in a changing environment, while evolvable populations are produced by divergent selection,

which encourages phenotypic diversity.

These results reconcile conflicting notions of how evolvability can be replicated in artificial settings.

While varying the target of selection may be an improvement over a static environment, the population

as a whole is most evolvable when selection explicitly promotes exploration instead of focusing on a

specific objective. This result suggests that future efforts to create open-ended evolutionary complexity

are best served by making use of divergent selection as opposed to adaptive measures.

Funding statement: This research received no specific grant from any funding agency in the

public, commercial, or not-for-profit sectors.
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