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AI for Population Health:
Melding Data and Algorithms on Networks

Abstract

As exemplified by the COVID-19 pandemic, our health and wellbeing depend on a difficult-

to-measure web of societal factors and individual behaviors. My research aims to build

computational methods which can impact such social challenges. This effort requires new

algorithmic and data-driven paradigms which span the full process of gathering costly data,

learning models to understand and predict interactions, and optimizing the use of limited

resources in interventions. In response to such needs, this thesis presents methodological

developments at the intersection of machine learning, optimization, and social networks

which are motivated by on-the-ground collaborations on HIV prevention, tuberculosis

treatment, and the COVID-19 response. These projects have produced deployed applications

and policy impact. One example is the development of an AI-augmented intervention for

HIV prevention among homeless youth. This system was evaluated in a field test enrolling

over 700 youth and found to significantly reduce key risk behaviors for HIV.
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Introduction

Societies around the world face an array of complex obstacles to human welfare: health,

homelessness, poverty, and an array of other interlocking challenges disproportionately

burden the most vulnerable. Fields such as public health and social work study central

questions in the understanding of these phenomena and the design of effective interven-

tions to improve well-being and access to opportunity. These efforts often raise difficult

computational questions and it seems clear that data-driven strategies could enable more

targeted actions, responsive to the needs of specific communities. However, engagement

from the AI community with population or community-level questions has thus far been

somewhat limited, especially when compared to the huge amount of work which focuses

on individual-level health (i.e., clinical settings). Important advances have been made on

specific questions such as forecasting epidemics [YSK15, BFH+18, AXRP19, WCM19, ZY20],

planning vaccination campaigns [PAI+13, SAPV15, ZAS+16], or allocating services related

to homelessness or poverty [KWVR19, KDF19, AKW20]. However, relative to the enormous

impact that advances on these problems would have, there is thus far only limited sys-

tematic understanding of the principles behind designing AI approaches to such domains.

Accordingly, the question studied in this thesis is:

How can we build AI which impacts population health?

Designing algorithmic or machine learning approaches for these real-world settings

poses a number of challenges. To name a few:

• Such problems are situated in a complex social context involving a range of stakeholders.
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At the very least, this includes both members of the impacted community, who are

often in some way vulnerable or marginalized, and government or nonprofit actors

charged with providing services to the population. Computational approaches must

be designed with awareness of these dynamics to produce interventions which center

the needs of impacted communities and are practically useable by actors who have

the capacity to implement an intervention.

• Beyond the need to consider people as stakeholders, the systems which we seek to

intervene in are fundamentally social, with outcomes driven by the collective decisions,

behaviors, and interactions of people in a give community. This creates a need for

algorithms to explicitly reason about networks and other forms of social structure.

• Interventions are inevitably subject to limited resources. No public health agency, NGO,

or housing authority has the ability to offer all of the services they would like to

everyone they would like, forcing fraught decisions about resource allocation.

• The targeting of these resources relies on limited data. Important information, e.g.,

the social structures underlying a domain, or the true burden of disease, is often not

well known. Gathering data to answer these questions is itself an expensive endeavor

which trades off against other important goals.

As a field, artificial intelligence is in the early stages of its engagement with such

domains. A great deal of work has been done on topics such as health or sustainability,

and related areas such as fairness and accountability. However, comparatively little work

specifically engages with population or community-level interventions, or has succeeded in

transferring proposed AI techniques from the lab to the community. This work contained

in this thesis encapsulates the complete process of working from community engagement,

to data, to decisions, to implementation. Along the way, we lay algorithmic foundations

for optimization and resource allocation under uncertainty, and for the design of machine

learning models which enable effective decision making. Figure 1 presents an overview of

this process.

2



It is worth addressing at the outset that the use of computing in socially consequential

settings has been subject to substantial criticism. One concern is the propensity for compu-

tational approaches to entrench existing biases or inequalities [BG18, ALMK16, OPVM19,

BCZ+16]. Another is that computational researchers typically have operated within existing

power structures instead of being pursuing broader societal reforms [Eub18, Gre20, DK20,

WCD+18, Hof19]. The viewpoint taken in this thesis is that technology never provides

the solution by itself to a social problem. However, I contend that technology can serve to

augment human capabilities and, in doing so, substantially increase the effectiveness of

larger efforts to address social challenges. Accordingly, the responsibility of computational

researchers is to work closely with stakeholders in a given domain to understand how com-

putation can support their goals [Hay11, FHB17, BXANK21]. It is incumbent on researchers

to account for the impact of their work on all of those who are effected, including those who

have less control over, or are not well served by, existing organizational structures [IK21].

This often requires spending time to conduct fieldwork and learn from people in a variety of

roles (e.g., members of partner organizations, researchers in other disciplines who have rele-

vant expertise, frontline workers, individuals receiving services, etc.). The work presented

in this thesis on HIV prevention and tuberculosis treatment was informed by exactly this

process. A more extended discussion of related considerations can be found in Chapter 4

(which includes a reflection on lessons learned about the process of community-oriented AI

research), Chapter 11 (which considers the problem of training machine learning models to

complement human capabilities), and Chapter 14 (which outlines an agenda for the training

of computational researchers competent to work in community settings).

Overview of contributions

This thesis is divided into four parts. Part I (Networks and health) covers the algorithmic

foundations, real-world deployment, and evaluation of an AI-augmented intervention for

HIV prevention amongst youth experiencing homelessness. Part II (Uncertainty and opti-

mization) presents algorithmic approaches to solving optimization problems motivated by
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Figure 1: The process of developing and deploying AI-augmented interventions, alongside the main application
domains for this thesis.

resource allocation in public health settings, with a particular focus on allocating resources

under uncertainty. Part III (Learning and decisions) introduces a set of techniques for inte-

grating downstream decision or optimization problems into the training of machine learning

models, an approach we refer to as decision-focused learning. It also provides a case study

of these ideas in the context of tuberculosis treatment. Part IV (Inference and epidemics)

presents work undertaken in response to the COVID-19 pandemic, focusing on the devel-

opment of modeling and inference techniques to uncover unobserved disease dynamics.

This thesis draws on material published in [WIRT18, Wil18a, Wil18b, WST18, WOVH+18,

WDT19, KWS+19, TWR+19, WEDT19, WHK20, WOVD+21, WCK+20, WMT21]. We now

present an overview of the contributions made in each chapter.

Part I: Networks and health

Part 1 discusses the development and deployment of an AI-augmented intervention for

HIV prevention among youth experiencing homelessness (YEH). HIV is a key public health

challenge for YEH, with reported prevalence in the range of 2-11% [YR11]. One promising

intervention relies on peer leaders recruited from the population of YEH to advocate for the

adoption of protective behaviors. The most common way of selecting peer leaders is to
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Figure 2: Left: Administering surveys at a drop-in center for youth experiencing homelessness. Right:
community partners for HIV prevention intervention.

identify the most popular individuals in the social network of the youth [KMS+97] (formally,

the highest degree nodes). However, the peer leader model has suffered notable failures

in other HIV prevention contexts [G+10], potentially attributable to how peer leaders are

selected [SZL15]. The algorithmic question becomes: how can we identify the most influential

set of peer leaders for a behavioral intervention? This question has relevance far beyond HIV

prevention; analogous social network interventions are used widely across development,

medicine, education, etc. [KHS+15, PSA16, BCDJ13, VP07].

The problem of maximizing information diffusion on social networks has been exten-

sively studied in theoretical computer science [KKT03, CWY09, CWW10, GLL11a, BBCL14,

TXS14]. The canonical problem formulation, introduced by Kempe, Kleinberg, and Tardos

[KKT03], asks the algorithm to select a limited budget of up to k seed nodes from a graph G.

The objective is to maximize the expected number of nodes reached with information under

a model of information diffusion such as the independent cascade model, where every edge

independently propagates influence with some probability. Efficient algorithms, rooted in

submodular optimization, are now available for the influence maximization problem as a

result of the long history of work. However, there has been little interaction between the

computation literature on influence maximization and network interventions in fields like

public health or social work. Computational work has mainly focused on scaling algorithms

for the standard problem formulation to increasingly large graphs (often motivated by
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advertising), while interventionists in health domains have not used explicitly algorithmic

approaches to optimize the selection of peer leaders. As a result of this gap, existing

algorithmic tools are difficult to apply in the field: they assume access to data (such as the

structure of the social network) which is difficult and expensive to acquire in a real-world

setting.

Part I of the thesis begins by developing and analyzing algorithms to address some

of the key technical bottlenecks to the real-world use of influence maximization. Chapter

1 introduces the problem of influence maximization with an unknown network, where

the structure of the graph G is not known ahead of time. Instead, the algorithm has the

ability to query the graph structure by surveying a chosen node, revealing that node’s set

of neighbors. Reflecting the fact that the real-world instantiation of this process involves

face-to-face surveys with homeless youth, these queries are expensive and we would like to

use as few as possible. The goal is thus to (1) select a set of seed nodes who are guaranteed

to be approximately as influential as the optimal set given full knowledge of the network

structure and (2) bound the number of queries to the graph structure required to obtain this

approximate solution. In the worst case, we find that these goals are incompatible: there are

graphs where any algorithm which obtains a constant-factor approximation to the optimal

influence spread must query all but a o(1) fraction of the network. Fortunately though,

we show that realistic forms of network structure can be leveraged for an exponentially

better outcome. In particular, graphs often exhibit community structure, where nodes lie in

distinct groups, with much denser connections within communities than between them. Our

theoretical analysis shows that when graphs have this kind of structure, formalized in the

canonical stochastic block model, we can obtain a guaranteed constant-factor approximation

to the omniscient optimum while querying only O(log n) nodes. The algorithm simulates

a series of short random walks on the graph, and uses the information gathered on these

walks to reconstruct a limited amount of the community structure. Despite the fact that

most of the community structure cannot be identified from such little data, we prove that it

is possible to identify a set of nodes which seed the largest communities in the graph with
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constant probability.

Chapter 2 tackles another challenge related to the limited data often available in targeting

real-world network interventions. In particular, the parameters describing how information

will propagate across the graph G are typically not known, and are very difficult to elicit at

all. For example, in the independent cascade model, we might have a parameter θij for every

pair of nodes (i, j) which gives the probability that i will influence j. Since the parameters θ

will typically be unknown, an attractive solution concept is given by the robust optimization

problem:

max
|S|≤k

min
θ∈Θ

f (S, θ)

where we seek a set of nodes S, up to a budget constraint k, which maximizes the worst-

case influence spread over an uncertainty set of possible parameters Θ. Here f (S, θ)

denotes the expected number of nodes influenced by seed nodes S under parameters θ.

We can view this as an instance of the more general robust submodular optimization problem

where f is an arbitrary submodular function with parameterization θ. While algorithms

have been developed for robust submodular optimization [KMGG08, AHN+17, CLSS17],

their runtime scales with the size of the uncertainty set Θ because it is necessary to

essentially enumerate the entire uncertainty set in every iteration of the algorithm. This

poses a serious computational burden in combinatorial domains like influence maximization

where Θ becomes large – perhaps exponentially large in the size of the graph [HK16],

or a continuous set [SWJ19]. We introduce the first approximation algorithm for robust

submodular optimization whose runtime is independent of |Θ|. Instead, it requires only that

we can efficiently solve the inner minimization problem minθ∈Θ ES∼P[ f (S, θ)] for a fixed

distribution over sets P. To demonstrate the broad reach of this algorithmic framework, we

show applications to a range of other domains (budget allocation [SKIK14] and network

security games [TYK+10]).

Chapter 3 begins the process of applying these algorithmic foundations to the HIV

prevention problem. We propose a system called CHANGE which integrates together
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ideas from robust optimization, network sampling techniques inspired by Chapter 1, and

additional operational modifications to produce a field-ready system for influence maximiza-

tion. We find that the last mile before deployment introduces significant challenges. These

challenges were uncovered by conducting real-world pilot tests of potential algorithmic

systems, in collaboration with partners in social work and local community organizations.

These pilot tests allowed us to refine and validate our algorithmic ideas to propose the final

CHANGE system, setting the stage for the larger-scale trial discussed in Chapter 4.

One example of such a last-mile problem concerns the sampling algorithm from Chapter

1. Recall that the algorithm queries the network by simulating a series of random walks.

While theoretically appealing, this approach can be difficult to practically operationalize

because it requires finding a specific sequence of youth (who may or may not be present

that day at the center offering services). We propose a simplification of the algorithm which

uses less adaptivity (i.e., fewer queries which depend on the results of previous queries)

and which succeeds by leveraging an additional property of social networks referred to

as the friendship paradox. Another challenge relates to attendance at the intervention

itself. Prospective peer leaders selected by the algorithm attend a day-long training on HIV

awareness and outreach skills. However, there are any number of barriers which could

prevent a given YEH from being able to attend on the day-of. In practice, a series of classes

will be conducted, each of which trains a set of 3-4 peer leaders. Further, the youth selected

as peer leaders in any given class can be chosen with knowledge of which youth actually

attended previous classes. We accommodate this complication by building a stochastic

extension of the objective function reflecting imperfect attendance and proving that that

multi-stage optimization problem enjoys the favorable property of adaptive submodularity,

removing the need to look far into the future when planning.

Chapter 4 presents the results of a large-scale field trial of CHANGE. Together with

social work colleagues and three drop-in centers which offer services to YEH in the Los

Angeles area, we ran a trial which enrolled 718 youth over the course of several years.

This trial compared three arms: first, where peer leaders were selected using CHANGE;
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second, where the highest degree nodes were selected (the method mostly commonly used

in practice); and third, an observation-only control group. Our results show that youth in the

CHANGE arm of the trial experienced significant improvements in their rates of condomless sex,

a key risk behavior for HIV (approximately a 30-40% reduction in relative risk). By comparison,

there was at most limited statistical evidence for any improvement by youth in the degree

centrality arm. This study provides, to our knowledge, the first rigorous empirical evaluation

of algorithmic techniques for social network interventions in health. We draw two broad

conclusions from this process. First, AI has a great deal of potential to impact the design

of interventions in socially important contexts such as public health and social work –

algorithmic approaches which systematically optimize the entire set of peer leaders seem to

offer a large improvement over the status quo. Second, AI decidedly does not work "out

of the box". The development of a successful AI-augmented intervention resulted from a

long process of engagement with domain experts and community members, weeks spent by

us (the AI researchers) at the drop-in centers doing field work, and then, during and after

that process, the design and analysis of algorithms to address the new technical challenges

we discovered. The chapter concludes with a reflection on the lessons learned from this

experience.

Part II: Uncertainty and optimization

Part 2 of the thesis explores a range of optimization problems inspired by public health

domains, developing the algorithmic theory to support effective decision-making under

uncertainty.

Chapter 5 studies an optimization problem motivated by preventing the spread of an

infectious disease. The particular motivation deals with tuberculosis (TB), a devastating

epidemic which impacts millions of people each year. For TB, as with many infectious

diseases, interventions must be planned under considerable uncertainty about important

parameters such as the underlying distribution of disease in the population or the rate of

spread of the disease between different population groups. We introduce an age-stratified
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model of disease spread aimed at capturing a range of endemic diseases like TB. We then

consider the problem of targeting a budget-constrained intervention which increases the

uptake of treatment in chosen population groups (e.g., case-finding drives where frontline

health workers attempt to enroll undiagnosed TB patients in treatment). We show that,

while this problem is nonconvex, it exhibits a continuous submodularity property which

allows us to provide an efficient approximation algorithm for stochastic optimization over

the unknown parameters. Experimental results on a problem setting motivated by TB in

India, as well as a scenario motivated by gonorrhea in the US, show that our algorithm

produces more effective strategies than classical heuristics.

Chapter 6 studies the problem of risk-averse submodular optimization. Decision makers

in many domains face uncertainty. In response to this uncertainty, a common objective is to

find a decision which maximizes expected utility. However, expected utility maximization

may be inappropriate in many settings (including socially consequential ones) where it

is disproportionately important to avoid negative outcomes. Risk measures such as the

conditional value at risk (CVaR) formalize this objective. The problem of optimizing the

CVaR of a decision is well-understood algorithmically when the decision can be modeled as

a convex optimization problem. However, the picture is much less clear when the decision-

maker’s utility is nonconvex. In this chapter, we study the problem of maximizing the CVaR

of a continuous submodular function (including, as a special case, the disease prevention

objective introduced in Chapter 5). We introduce the first approximation algorithm for this

problem, which obtains an efficient
(
1− 1

e

)
-approximation to the optimal solution. We also

show how this algorithm can be extended to handle optimization of set functions in the

portfolio setting (where a distribution over sets is chosen). We provide experimental results

for a contagion detection problem, where the goal is to detect a spreading process on a

graph (such as an infectious disease or environmental contamination) by placing sensors.

These results show that CVaR optimization provides an effective and principled way to

diversify the set of selections and hedge against the risk of catastrophic outcomes.

Chapter 7 considers the challenge of ensuring fairness in network interventions, such as
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the HIV prevention intervention introduced in Part 1. Especially in socially consequential

settings, it is important to guarantee that interventions will have an equitable impact across

groups in the population; for network interventions, we might particularly worry that

already-marginalized groups will be less well connected in the network and so will not be

prioritized by algorithms which maximize total influence spread. We propose optimization

formulations which modify the influence maximization problem to explicitly consider group-

level fairness. We find that these problems fall under the umbrella of the more general

multi-objective submodular optimization problem, which provides a flexible abstraction

for algorithmic instantiations of group fairness in this domain. For this more general

problem, we introduce a new approximation algorithm which improves simultaneously on

the approximation ratio and runtime offered by the previous state of the art.

Part III: Learning and decisions

Part 3 of this thesis studies settings where decision-making under uncertainty can be

explicitly informed by machine learning from historical data. It develops a set of techniques

to integrate a decision problem of interest into the training of a machine learning model

so that the model can be trained directly to induce the best decisions possible (instead

of minimizing a surrogate loss function measuring predictive accuracy). The goal is to

enable more actionable decision-focused machine learning, where machine learning models

can easily be trained for their intended use case – an especially important concern when

machine learning will be just one step in an intervention for a larger social challenge.

Chapter 8 introduces the problem of training a machine learning model which will be

used downstream in a discrete optimization problem. Specifically, suppose that we would

like to solve an optimization problem maxx∈X f (x, θ) where x is a (discrete) decision variable

and θ is an unknown parameter. Previous chapters considered approaches for handling θ

like robust or stochastic optimization, which are appropriate when only a set or distribution

of possible scenarios can be formulated. However, suppose that we have a set of features y

with which θ can be predicted. Now, we can train a machine learning model m(y) which
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outputs a predicted θ̂ and solve maxx∈X f (x, θ̂) (optimizing under the prediction made by

the model). Define x∗(θ) = arg maxx∈X f (x, θ) to be the optimal decision given parameters

θ. The question is how we should train the model m to predict θ, knowing that we ultimately

care about x∗(θ). Suppose that our training data consists of a set of historical examples

{yi, θi} iid from an unknown joint distribution P. This is the standard supervised learning

setting. Our true objective is to find a model m which optimizes

E
y,θ∼P

[ f (x∗(m(y)), θ)], (1)

which gives the expected utility of the decision induced by m. However, a standard two-stage

approach would first train m to minimize a surrogate loss function `, and then plug the

resulting θ̂ into an optimization algorithm to produce x∗. Misalignment between the loss

function and the optimization problem means that the two-stage process can be far from

optimal for decision-making, especially for difficult learning problems where any model is

far from perfect.

We instead propose approaches to directly train m to optimize the decision-focused

objective in Equation 1. The key idea is to differentiate through the function x∗(θ), which

allows m to be trained end-to-end via gradient descent. This requires computing derivatives

through the solution of the optimization problem, expressing how x∗ varies as a function

of the predictions θ. Previous work on differentiable optimization [RU00, AK17, DAK17]

focuses on strongly convex optimization problems. However, many socially important

settings involve the allocation of indivisible resources, and discrete optimization is by

construction not differentiable.

This chapter proposes to use a continuous relaxation of the discrete problem as a differ-

entiable surrogate during training. We study two common classes of discrete optimization:

linear programs and submodular maximization. In the case of linear programs, we prove

that adding a quadratic regularizer to the objective function suffices to guarantee differen-

tiability. For submodular maximization, we show that the multilinear relaxation provides

an effective and differentiable continuous surrogate, and provide a means to efficiently

12



Figure 3: Left: tuberculosis clinic, Sonapur, India. Right: the primary health center which houses the TB
clinic.

compute dual variables needed for the backward pass. Experimental results on real and

synthetic datasets show that our proposed methods are able to improve the quality of

downstream decisions compared to standard two-stage methods.

Chapter 9 applies the techniques developed in Chapter 8 to the problem of improving

adherence to tuberculosis medication. First-line treatment for TB requires a six-month course

of antibiotics. Non-adherence to antibiotic treatment can lead to a range of complications

such as reinfection with active TB or the development of antibiotic resistance. In many

countries, such as India, frontline health workers are responsible for supporting patients

in staying on treatment. This work was conducted in collaboration with the Government

of Maharashtra, focusing on TB care in the city of Mumbai. TB patients in Mumbai use a

digital adherence technology called 99DOTS, where patients leave a missed call at a specially

chosen phone number each day to indicate that they took their medication. The challenge is

that, given high case loads, health workers have limited resources to follow up with patients

who are at risk of nonadherence. For example, a frontline health worker might make home

visits to particularly at-risk patients, but these visits can be made to at most a small number

of patients each day.

We used historical adherence data from the 99DOTS platform to develop a decision-

focused approach which first predicts the risk of nonadherence for each patient and then

suggests an optimal assignment of health workers to visit patients. We draw on the
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techniques formulated in Chapter 8 to formulate a differentiable relaxation of a linear

program which models the matching of health workers to locations. We compare this

decision-focused approach to a two-stage approach which trains the machine learning

model using a standard loss function. Our results on the 99DOTS dataset, which encompasses

over 17,000 patients and 2.1 million interactions, show that the decision-focused approach results in

approximately 15% more successful interventions than the two-stage approach. This is despite the

fact that the two-stage baseline has better predictive accuracy, as measured by the AUC. The

broader takeaway is that when machine learning models will be used in the context of a

larger intervention, standard measures of predictive accuracy are not a sufficient measure

of their performance. We need approaches which are expressive enough to allow machine

learning models to be trained with the complete pipeline of the intervention in mind.

Chapter 10 explores more of the technical foundations of decision-focused learning,

proposing an alternate strategy for differentiable optimization. While differentiable relax-

ations can provide appealing training surrogates for some problems, it can often be difficult

to find relaxations which induce tractable training landscapes. Moreoever, approaches which

derive from convex optimization typically require O(n3) time for each backward pass, where

n is the number of decision variables. In this paper, we propose to instead learn representa-

tions which enable easier optimization. Specifically, we use a trainable model (e.g., a graph

convolutional network) to map a discrete input to a continuous representation space. Then,

we solve a simple surrogate problem in the continuous space, and interpret the output of the

surrogate as a solution to the original discrete problem of interest. This idea is instantiated

in the chapter using k-means clustering as the surrogate problem. For example, if we wished

to choose k vertices of a graph as locations for facilities, we could produce a continuous

embedding of the nodes of the graph, use soft k-means clustering to group the nodes into

clusters in the embedding space, and then locate facilities at the nodes which are closest to

the cluster centers. The model is trained end-to-end, with the clustering algorithm as part

of the training loop. Essentially, this allows the model to learn a continuous representation

which maps the original discrete problem to an instance of clustering. We show that this
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strategy enjoys a range of favorable properties, both theoretically and empirically: we can

obtain a provably good approximation to the backward pass in time O(n) instead of O(n3),

and the resulting model empirically offers strong generalization to unseen graphs. More

broadly, we argue that this system is an instantiation of a paradigm for combining learning

and optimization, where we co-train both the learning and optimization components of the

system by combining representation learning with a simpler differentiable algorithm that

provides a surrogate for optimization.

Chapter 11 explores ideas related to decision-focused learning in a different setting: one

where a machine learning system will function as part of a team with human experts. For

example, imagine a machine learning model which will be used to diagnose the presence of

cancerous cells in an image. In reality, this model is unlikely to be used in isolation. Rather,

some cases will be escalated to a human pathologist if the outcome is unclear, and this expert

might have information or forms of reasoning which are unavailable to the algorithm. We

propose that machine learning models which will be used as part of such teams should be

trained specifically for complementarity with the human expert. That is, the model should be

able to recognize the characteristic strengths and weaknesses of humans and machines in the

domain. This would allow its training to focus on instances which are difficult for humans,

with the knowledge that other instances might be difficult for the model but can safely be

left to the human. We propose training strategies which directly optimize for the combined

performance of the team as a whole, instead of optimizing the model’s performance in

isolation. One technical contribution is to introduce a differentiable surrogate for the value

of information computation, where the model estimates whether the expected benefit to

querying the human outweighs the cost of doing so. We conduct experiments on two real

world domains: a citizen science task, and breast cancer diagnosis. In both domains, our

results show that optimizing ML models specifically for complementarity results in better

team performance.
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Part IV: Inference and epidemics

The final part of this thesis contains work directly related to the COVID-19 pandemic. The

aim is to develop computational tools, rooted in modeling and Bayesian inference, which

can make help make sense of noisy outbreak data, uncover the dynamics of the pandemic

across different populations, and inform the design of policy interventions.

Chapter 12 develops an agent-based model for COVID-19 dynamics which incorporates

a rich array of demographic and household structure information. We develop a Bayesian

inference method to infer posterior distributions over unknown model parameters, allowing

us to uncover unknowns in the dynamics of early outbreaks in Hubei, Lombardy, and

New York City. We find evidence for consequential differences in dynamics across these

populations, e.g., differing levels of transmissibility and case ascertainment in the first wave.

We then simulate the potential impacts of policy interventions which reduce the contact

levels of particular age groups in each population. We similarly find that, depending on

variations in first-wave dynamics, demography, and social structure, there is no "one size

fits all" solution. Instead, the most effective set of contact reductions varies across all three

populations.

Chapter 13 focuses on inferring the growth rate of a partially observed epidemic. This

problem is motivated by the challenge of tracking the spread of COVID-19 (or another

infectious disease) at a fine-grained level, where noise in the detection of infections via

testing begins to drown out the signal. We introduce a Bayesian model which places a

Gaussian process prior over the time-varying reproduction number Rt. The model explicitly

includes the process by which infections are observed, allowing for a great deal of flexibility

in specifying the observation distribution. For example, it can encompass an arbitrary

distribution of delays between infection and detection, varying sensitivity of different kinds

of tests over the course of infection, or particular sampling designs (e.g., cross-sectional or

longitudinal sampling of people to be tested). To accommodate this flexibility, we develop

a scalable stochastic variational inference strategy which combines a modified variational

bound, the ability to differentiate through portions of the model of disease transmission,
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and the ability partially marginalize out some sources of randomness. We find that the

ability to capture partial observability is crucial in small-sample settings, where standard

methods become unreliable, delivering inaccurate and poorly calibrated predictions. By

contrast, our method retains better accuracy and strong calibration properties even when

observations are noisy.

17



Part I

Networks and health
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Chapter 1

Exploratory Influence Maximization

on Unknown Networks

In contexts ranging from health [VP07, RTC+12] to international development [BCDJ13],

practitioners have used the social network of their target population to spread informa-

tion and change behavior. While previous work has delivered computationally efficient

algorithms for this influence maximization problem [KKT03, CWW10, BBCL14, TXS14], this

literature has had little interaction with the use of social network interventions in socially

impactful domains. Part 1 of this thesis focuses on the design of algorithms for targeting

network interventions which respond specifically to the challenges of community health

settings. This work was motivated specifically by an application to HIV prevention for youth

experiencing homelessness, and later chapters present a pilot test and larger-scale trial of

an algorithm in this domain. The first several chapters of the thesis lay the algorithmic

groundwork for this effort, focusing on theoretical analysis of the key technical challenges

introduced by real-world domains.

One common challenge is that the network is not initially known and must be gathered

via laborious field observations. For example, collecting network data from vulnerable pop-

ulations such as homeless youth, while crucial for health interventions, requires significant

time spent gathering field observations [RTC+12]. Social media data is often unavailable
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when access to technology is limited, for instance in developing countries or with vulnerable

populations. Even when such data is available, it often includes many weak links which are

not effective at spreading influence [BFJ+12]. For instance, a person may have hundreds

of Facebook friends whom they barely know. In principle, the entire network could be

reconstructed via surveys, and then existing influence maximization algorithms applied.

However, exhaustive surveys are very labor-intensive and often considered impractical

[VP07]. For influence maximization to be relevant to many real-world problems, it must

contend with limited information about the network, not just limited computation.

The major informational restriction is the number of nodes which may be surveyed to

explore the network. Thus, a key question is: how can we find influential nodes with a small

number of queries? We formalize this problem as exploratory influence maximization and seek a

principled algorithmic solution, i.e., an algorithm which makes a small number of queries

and returns a set of seed nodes which are approximately as influential as the globally

optimal seed set. Existing field work uses heuristics, such as sampling some percentage of

the nodes and asking them to nominate influencers [VP07]. To our knowledge, no previous

work directly addresses this question from an algorithmic perspective (see related work).

We show that for general graphs, any algorithm for exploratory influence maximization

may perform arbitrarily badly unless it examines almost the entire network. However, real

world networks often have strong community structure, where nodes form tightly connected

subgroups which are only weakly connected to the rest of the network [LLDM09]. Conse-

quently, influence mostly propagates locally. Community structure has been used to develop

computationally efficient influence maximization algorithms [WCSX10, CZP+14]. Here, we

use it to design a highly information-efficient algorithm. We make four contributions. First,

we introduce exploratory influence maximization and show that it is intractable for general

graphs. Second, we present the ARISEN algorithm, which exploits community structure to

find influential nodes. Third, we show that ARISEN has strong empirical performance on an

array of real world social networks. Fourth, we formally analyze ARISEN on graphs drawn

from the Stochastic Block Model (SBM) [FW81], a widely studied model of community

20



structure. We prove that it approximates the optimal influence if the entire network were

known by querying only a logarithmic number of nodes in the network size.

1.1 Exploratory influence maximization

As a motivating example, consider a homeless youth shelter which wishes to spread HIV

prevention information [RTC+12]. The shelter would try to select the most influential

peer leaders to spread information, but the youths’ social network is not initially known.

Constructing the network requires a laborious survey [RTC+12]. Our motivation is to

mitigate this effort by querying only a few youth. Such queries require much less time than

the day-long training peer leaders receive. We now formalize this problem.

Influence maximization: The influence maximization problem [KKT03], starts with a

graph G = (V, E), where |V| = n and |E| = m. We assume that G is undirected; social

links are typically reciprocal [SPRG12]. An influencer selects K seed nodes, aiming to

maximize the expected size of the resulting influence cascade. We assume that influence

propagates according to the independent cascade model (ICM), the most prevalent model in

the literature. Initially, all nodes are inactive except for the seeds. When a node activates, it

independently activates each of its neighbors with probability q. q is often assumed to be

the same for all edges [CWW10, KKT03, YCXJ+16]. Let f (S) denote the expected number

of activated nodes with seed set S ⊆ V. The objective is to compute arg max|S|≤K f (S).

Local information: The edge set E is not initially known. Instead, the algorithm

explores portions of the graph using local operations. We use the popular “Jump-Crawl"

model [BK10], where the algorithm may either jump to a uniformly random node, or crawl

along an edge from an already surveyed node to one of its neighbors. When visited, a node

reveals all of its edges. We say that the query cost of an algorithm is the total number of

nodes visited using either operation. Our goal is to find influential nodes with a query cost

that is much less than n, the total number of nodes.

Stochastic Block Model: In our theoretical analysis, we assume that the graph is drawn

from the stochastic block model (SBM), which provides a formal setting in which to analyze
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graphs with community structure. The SBM originated in sociology [FW81] and lately

has been intensively studied in computer science and statistics (see e.g. [AS15, KMM+13,

MNS15]). In the SBM, the network is partitioned into disjoint communities C1....CL. Each

within-community edge is present independently with probability pw and each between-

community edge is present independently with probability pb. Recall that the Erdős-Rényi

random graph G(n, p) is the graph on n nodes where every edge is independently present

with probability p. In the SBM, community Ci is internally drawn as G(|Ci|, pw) with

additional random edges to other communities. While the SBM is a simplified model, our

experimental results show that ARISEN also performs well on real-world graphs. ARISEN

takes as input the parameters n, pw, and pb, but is not given any prior information about

the realized draw of the network. It is reasonable to assume that the model parameters are

known since they can be estimated using existing network data from a similar population (in

our experiments, we show that this approach works well). For instance in HIV prevention,

homeless youth social networks have been shown to exhibit community structure and

several studies have gathered networks from which to infer pw and pb [YCXJ+16, RTC+12].

Our theoretical analysis will use a particular range of values for pw and pb. As formally

defined, the SBM encompasses a wide range of possible topologies, depending on how the

parameters pw and pb are set. Figure 1.1 gives a few examples, ranging from the a bipartite

graph to an Erdős-Rényi graph. The community-structure graph that we intend to model is

Figure 1.1(a). We later define a parameter range which produces such networks.

Objective: We compare to the globally optimal solution, i.e, the best performance if the

entire network were known. Let fE(S) give the expected number of nodes influenced by

seed set S when the set of realized edges are E. Let A(E) be the (possibly random) seed set

containing our algorithm’s selections given edge set E. Let OPT be the expected value of the

globally optimal solution which seeds K nodes. We aim to prove that E[ fE(A(E))] ≥ αOPT

for some approximation ratio α, where the expectation is over the randomness in the graph,

the algorithm’s choices, and the ICM.
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a b

c d

Figure 1.1: Example SBM networks. (a) A community structured network (pw = 0.1, pb = 0.005). (b) A
bipartite graph (2 communities, pw = 0, pb = 0.1). (c) An Erdős-Rényi graph (1 community, pw = 0.2). (d)
One small community with pw = 1; the rest in a community with pw = 0, pb = 0.

1.2 Related work

First, Yadav et al. [YCXJ+16] and Wilder et al. [WYI+17a] studied dynamic influence

maximization over a series of rounds. Some edges are "uncertain" and are only present

with some probability; the algorithm can gain information about these edges in each round.

However, most edges are known in advance. By contrast, our work does not require any

known edges. Mihara et al. [MTO15] also consider influence maximization over a series of

rounds, but in their work the network is initially unknown. In each round, the algorithm

makes some queries, selects some seed nodes, and observes all of the nodes which are

activated by its chosen seeds. The ability to observe activated nodes makes our problem

incomparable with theirs because activations can reveal a great deal about the network

and give the algorithm information that even their benchmark does not have. Further,

activations are unobservable in many domains (e.g. medical ones) for privacy and legal

reasons. Carpentier and Valko [CV16] study a bandit setting where the algorithm does

not know the network but observes the number of activations at each round. However, in

applications of interest (e.g., HIV prevention) it is not feasible to conduct many low-reward
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Figure 1.2: Example run of ARISEN with K = 3 (explained further in text). Each block is one sample, with
current weight proportional to its height (e.g., in Frame 2, C5 has one sample with very high weight).

trial campaigns.

Another line of work concerns local graph algorithms, where a local algorithm only uses

the neighborhoods around individual nodes. Borgs et al. [BBC+12] study local algorithms

for finding the root node in a preferential attachment graph and for constructing a minimum

dominating set. Other work aims to find nodes with high PageRank using local queries

[BPP13, BBCT14]. These algorithms are not suitable for our problem since a great deal of

previous work has observed that seeding high PageRank nodes can prove highly suboptimal

for influence maximization [KSNM09, CWW10, JHC12]. Essentially, PageRank identifies a

set of nodes that are individually central, while influence maximization aims to find a set

of nodes which are collectively best at diffusing information. We also emphasize that our

technical approach is entirely distinct from work on PageRank. Lastly, Alon et al. [AFLT15].

attempt to infer a ground truth from the opinions of agents with an unknown social network,

a different task from ours with correspondingly distinct techniques.

1.3 Hardness result

We seek algorithms whose query cost grows slowly with n. The following shows that no

algorithm with strictly sublinear query cost obtains a constant factor approximation for

24



general graphs. The notation o(1) refers to a term which goes to 0 as n→ ∞.

Theorem 1. There exists a family of graphs on which any algorithm with query cost O(n1−ε) for

some ε > 0 has approximation ratio no better than o(1).

Proof. Consider a family of graphs which consist of a clique on log n nodes along with

n− log n isolated nodes. Let q = 1 and K = 1. The algorithm gets influence log n if it selects

a node in the clique, and influence 1 otherwise. The probability it ever samples the clique is at

most 1− (1− log n
n )O(n1−ε) ≤ 1− e−

log n
O(nε) (1− log2 n

n )O(nε) = o(1). Hence, its expected influence

is o(1) log n + 1, while OPT is log n, giving approximation ratio o(1) log n+1
log n = o(1).

The general impossibility of sample-efficient algorithms motivates our focus on graphs

with community structure, as formalized in the stochastic block model.

1.4 The ARISEN algorithm

We now introduce our main contribution, the ARISEN algorithm (Approximating with Random

walks to Influence a Socially Explored Network). At a high level, ARISEN aims to leverage

community structure in a network by choosing a set of K seed nodes which cover the

largest K communities in the network. Figure 1 shows an example, explained in detail later.

The idea behind ARISEN (Algorithm 1) is to sample a set of T random nodes {v1...vT}
from G and explore a small subgraph Hi around each vi by taking R steps of a random

walk (Lines 1-3). R and T are inputs; Section 1.5 gives settings which obtain theoretical

guarantees. Intuitively, T should be greater than K (the number of seeds) so we can be

sure of sampling each of the largest K communities. R is the number of steps taken on the

random walk, chosen to ensure that enough samples are taken to estimate the average degree

of a community accurately. The subgraphs Hi are used to construct a weight vector w where

wi gives the weight associated with vi (Lines 10-12). The algorithm then independently

samples each seed from {v1...vT} with probability proportional to w (Line 13).

We first formalize the objective that ARISEN optimizes, which is a lower bound on its

true influence. Let f (X, Ci) denote the influence of seed set X on the subgraph Ci and
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Algorithm 1 ARISEN(R, T)

1: for i = 1...T do
2: Sample vi uniformly random from G.
3: Hi = R nodes on a random walk from vi, after discarding the first B nodes.
4: end for
5: for i = 1...T do
6: Add geometric

(
d(u)

∆−d(u)

)
copies of each node u ∈ Hi to Hi

7: d̂ = 1
R ∑u∈Hi

d(u)

8: Ŝi =
d̂−pbn
pw−pb

9: end for
10: wj =

n
ŜjT

.

11: τ = max{Ŝj|∑{i|Ŝi≥Ŝj} wi ≥ K}
12: For any j with Ŝj < τ, set wj = 0.

13: Sample u1...uK
iid∼ w′

14: return u1...uK

g(X) = ∑L
i=1 f (X, Ci), i.e., the influence spread within each community without considering

between-community edges. ARISEN aims to optimize E[g(X)]. Note that f (X, G) ≥ g(X)

always holds. When pb is low and little influence spreads between communities (which is

the case that we study), g is a good proxy for the true influence. We now explain ARISEN in

detail, and how it optimizes the surrogate objective g. Our focus on g is justified in Section

1.5, where we bound the gap between E [g(X)] and OPT.

In the SBM, each community Ci has expected average degree di = |Ci|pw + (n− |Ci|)pb.

Solving for |Ci|, we can estimate the size of the community from its average degree. Since

we do not have direct access to di, ARISEN estimates di (and hence |Ci|) using the nodes

sampled in the random walk (Lines 7-8); we discard the first B nodes in this sampling to

avoid biasing the estimate. Since a random walk is biased towards high degree nodes, we

simulate the addition of a large number of self-loops at each node (Line 6). In particular, we

simulate the addition of ∆− d(u) self-loops at every node, where ∆ is a bound on the largest

degree in the graph (for the stochastic block model, approximately O(log n)). This means

that the final set of samples are drawn according to a random walk on a regular graph with

the same vertices, which ensures that in the stationary distribution each node has equal

probability of being visited. Effectively, this counteracts the bias of a random walk towards
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high-degree nodes by adding extra copies of low-degree nodes to the set of samples.

In order to choose seed nodes using the estimated sizes, a natural idea would be to

choose the K samples with the largest estimated size. However, this fails because large

communities are sampled more often and will be seeded many times, which is redundant.

E.g., in the example in Figure 13.2, placing all of the seeds in C1 would be suboptimal

compared to also seeding C2. The difficulty is that using local information, we will not

know which samples belong to the same community. One solution is to weight each sample

inversely to its size (Line 6), and then sample seeds with probability proportional to the

weights. This evens out the sampling bias towards large communities. Using weighted

sampling gives us a principled way to prioritize samples and facilitates later steps which

tune the weights to improve performance. In Figure 13.2, all communities have total weight

of 1 after inverse weighting (Frame 2).

Next, the weights are truncated so that only the largest K communities receive nonzero

weight (Line 7). After this step, the largest K communities have weight 1 and all smaller

communities have weight 0 (at least approximately, due to sampling errors). For example,

Frame 3 of Figure 13.2 shows that only C1, C2 and C3 have nonzero weight. Suppose that

we draw K seeds using the resulting weights. In each draw, each of the top K communities

is seeded with probability approximately 1
K . Thus, the cumulative probability that each is

seeded is nearly 1−
(
1− 1

K

)K ≥ 1− 1/e. This reasoning is formalized in our theoretical

guarantees.

1.5 Theoretical analysis

This section provides the main theoretical guarantees for ARISEN on graphs drawn from

the stochastic block model. We start with assumptions and preliminaries which formalize

the graph structure we study. Since the generic block model can capture a wide range of

behaviors, we must place some restrictions on pw and pb to model real-world networks.

While it is often possible to prove approximation guarantees for ARISEN in other settings, we

focus on a particular parameter range which produces networks with community structure.
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First, we assume that each of the top K communities occupies a constant fraction of the

network:

Assumption 1. For each i = 1...K, |Ci| > cn for some constant c > 0 independent of n.

Next, we assume that each community is internally connected:

Assumption 2. For all communities Ci, it holds that pw > log |Ci |
|Ci | and pw = O

(
log |Ci |
|Ci |

)
.

Here, log |Ci |
|Ci | is the threshold above which an Erdős-Rényi graph is connected with high

probability [JLR11]. Below the threshold, a constant fraction of the nodes lie outside the

largest component. Next, we require that between-community edges are limited:

Assumption 3. pb <
1
n .

This assumption ensures that the between-community edges do not themselves form

a large (constant-size) connected component in G. This assumption is necessary for us to

be able to use average degrees to estimate the size of a community; otherwise, between-

community edges begin to interfere with the estimates. Finally, we require that it is possible

to start a large influence cascade within each community:

Assumption 4. For all i = 1...K, pwq|Ci| > 1.

This implies that it is possible for an influence cascade to reach a linear portion of the

community. Otherwise, if pwq|Ci| < 1, at most O(log |Ci|) nodes can be influenced by any

constant number of seeds (via Lemma 16). We focus on when it is possible for influence

maximization to have large results, not when only a vanishingly small fraction of nodes can

possibly be reached.

We now state some helpful preliminaries before providing an overview of the analysis.

We often use the following connection between the joint behavior of the SBM/ICM on the

one hand, and the connected components of an Erdős-Rényi random graph on the other.

The ICM can be seen as removing each edge independently with probability 1− q. A node

is influenced if afterwards it lies in the same connected component as a seed node [KKT03].

Since each community is itself an Erdős-Rényi graph, the connected components induced
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by the ICM in each community are distributed exactly as those in an Erdős-Rényi graph

with connection probability pwq. A well-known result characterizes the component sizes:

Lemma 1 ([JLR11]). Consider the Erdős-Rényi graph G(n, p). If np < 1, then with probability 1−
o(1), its largest connected component has size at most 3

(1−np)2 log n. If np > 1, then with probability

1− o(1), its largest component has size (1 + o(1))βn . β is the solution to β + e−βnp − 1 = 0.

We denote by β(x) the fraction of nodes contained in the largest connected component

of G(x, pwq) (assuming that xpwq > 1 and the event in Lemma 16 occurs). β(|Ci|) gives the

fraction of Ci that can be reached by a cascade.

We now introduce two quantities which appear in the approximation ratio that we show.

First, define

β̄ =
1
K

K

∑
i=1

β(|Ci|)

to be the average fraction of the largest K communities which is reached by an influence

cascade. Second, let Gcomm be the graph G with all between-community edges removed and

define

γ =
OPT(Gcomm)

OPT(G)

to be the fraction of the optimal influence spread on G which is attainable on Gcomm. γ

measures the strength of the community structure which ARISEN leverages; γ = 1 when

the communities are entirely disconnected while γ decreases as they become less distinct.

Given these quantities, the following is our main theoretical result:

Theorem 2. For any ε < 1
K , ARISEN can be implemented using O

(
1
ε4 log(n) log2 ( 1

ε

)
log log

( 1
ε

))
samples with approximation ratio (

1− 1
e
− ε− o(1)

)
· β̄ · γ.

This is obtained by setting T = O
( 1

ε2 log 1
ε

)
and O

( 1
ε2 log(n) log

( 1
ε

)
log log

( 1
ε

))
.

For the number of samples, T (the number of outer-loop samples to take) is set so

that each community is sampled a number of times which closely approximates its true

proportion of the network size. R is set so that each random walk has sufficient time to mix
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and return an accurate estimate of the average degree (and hence the size of the community).

For the approximation ratio, the first term is nearly 1− 1/e, up to error terms which decrease

as n becomes large and ε small. We show that each of the top K communities is seeded

with probability close to 1− 1/e. The proof tracks the intuition outlined when ARISEN was

described: each community receives total weight close to 1, giving it probability close to 1
K

of being hit by each of K seeds.

The second term, β̄, is the average fraction over the top K communities which can be

influenced by a seed node (via Assumption 2(a)). These nodes form a giant connected

component under the ICM. Consider a given seed node ui, which is a uniformly random

node in some Ci. With probability β(|Ci|), ui lies in this component; hence it influences at

least β(|Ci|)2|Ci| nodes in expectation. The best that OPT can do is to influence the entire

connected component with certainty, giving an influence spread of β(|Ci|)|Ci|. The ratio

between these terms is β(|Ci |)2|Ci |
β(|Ci |)|Ci | = β(|Ci|), which we show can be approximated across the

top K communities by β̄. Essentially, β̄ expresses the difficulty of finding influential nodes

within each community and increases as the product µpwq becomes larger.

Finally, γ captures the extent to which seeding the largest K communities is a successful

strategy; i.e., whether most influence diffuses via within-community edges. This is because

OPT may leverage between-community influence propagation but in the worst case ARISEN

may succeed in using only within-community edges. We next show that γ is bounded by a

constant for stochastic block model networks with limited between-community influence

spread:

Theorem 3. Let cmax = maxi pbq · (n− |Ci|)|Ci| be the maximum number of expected influence

transmission events into any community and µ = 1
K ∑K

i=1 β(|Ci|)|Ci| be the average size of the giant

component induced by the ICM in the top K communities. Suppose that cmax < 1. Then,

γ ≥ 1− cmax

12 log n
µ

= Θ(1).

Combined with Theorem 2, this ensures a constant-factor approximation guarantee.

Intuitively, the condition cmax < 1 ensures that it is not possible to start a cascade reaching
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most of the communities in the network by seeding a single community. While it is clearly

possible to give guarantees for this case (even for choosing seeds completely at random),

our analysis focus on the more challenging case when influence spreads mostly within

communities.

1.6 Practical improvements

The seeding strategy used by ARISEN suffices to obtain the approximation guarantee proved

below and is the best possible for some networks. However, equal division of the seed nodes

over the largest K communities is overly pessimistic in other cases, such as when some

communities are much larger than others. In such cases, it would be better to focus more

seed nodes on large communities. RefineWeights tunes the weights w to account for such

scenarios. In essence, RefineWeights tries to exploit easier cases where some communities

are much larger than others by producing new weights w′. The final set of seed nodes can

then be sampled iid from w′.

RefineWeights (Algorithm 2) starts in Line 2 by defining vi to be the most influential

node in the sampled subgraph Hi (instead of the random starting node). Lines 5-11

successively modify each element of w. Starting with the weights corresponding to the

highest-value communities, RefineWeights asks whether g would be increased by doubling

the wi under consideration (Line 7). If yes, we set wi = 2wi and ask if it can be doubled

again. If no, RefineWeights performs a binary search between wi and 2wi to find the best

setting (Line 10). Then, it moves on to the weight corresponding to the next community. In

the example in Figure 13.2, Frame 4 shows that the weights of samples from C1 and C2 have

been increased. Each change is made only if it improves g, so we have:

Proposition 1. Let w the weight vector used in ARISEN and w′ be the output of Re-

fineWeights. Then, EX∼w′ [g(X)] ≥ EX∼w [g(X)].

The key difficulty is determining if each modification increases g. In the EstVal

procedure, we provide a way to estimate g using only local knowledge:
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Algorithm 2 RefineWeights

1: for i = 1...T do
2: vi = arg maxv∈Hi f (v, Hi)
3: end for
4: w′ = w
5: sort w′ in increasing order by f (vi, Hi)
6: for i = 1...T do
7: while EstVal(2w′i, w−i) > EstVal(w′) do
8: w′i = 2w′i
9: end while

10: w′i = BinarySearch(w′i, 2w′i)
11: end for

Proposition 2. EstVal(w) = EX∼w [g(X)]

We give the main idea here; see the appendix for a proof and pseudocode for EstVal.

Take any seed set X. Note that the influence within each Ci depends only on nodes in

X ∩ Ci, which we write as XCi . So, g can be rewritten as g(X) = ∑L
i=1 E[ f (XCi , Ci)]. If we

knew XCi , then we could calculate E [ f (XCi , Ci)] by simulating draws from the SBM for

the unobserved portions of Ci. Concretely, let Hi be the subgraph observed in community

Ci, with estimated size Ŝi. We simulate the rest of Ci by adding Ŝi − |Hi| new nodes, with

edges between them and Hi randomly generated from the SBM. This is sufficient to choose

the best seed within Hi, as in Line 2. For Line 7, we need to estimate g. The obstacle is

not knowing which of the v1...vT lie in the same community (since a node will contribute

less influence if there is another seed from the same community). However, we do know

(approximately) how many other times each community is sampled, and the (approximate)

weight that those samples will receive, so g can be estimated by averaging some careful

simulations. Via a standard Hoeffding bound (Kempe et al. 2015), O( n2

ε2 log 1
ε ) simulations

per EstVal call guarantee error ε with high probability.

1.7 Experiments

We now present experiments assessing ARISEN’s empirical performance. We make two

modifications to ARISEN to improve its practical performance. First, we set B = 0 and ∆ = 0;
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Figure 1.3: Influence compared to OPT as q varies.
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Figure 1.4: Influence spread compared to OPT as K varies with q = 0.15.
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i.e., skipping the burn-in and degree correction steps. While these are necessary to obtain

general theoretical guarantees, we find that in practice it is preferable to accept some bias

in the estimates in return for reduced variance and fewer queries. Second, we warm-start

RefineWeights by proposing w′ = exp(w) as the initialization since we observed that large

weights are often doubled several times.

We compare ARISEN with an array of baselines on several networks. We focus on

networks with about 100-1000 nodes because this is the size of real-world social groups

of interest to us. The first network is homeless: Two networks (a and b) gathered from

homeless youth in Los Angeles and used to study HIV prevention with 150-200 nodes

each. Second, india: Three networks of the household-level social contacts of villages in

rural India. Gathered by Banerjee et al. [BCDJ14] to study diffusion of information about

microfinance programs, with 250-350 nodes each. Third, netscience1: a collaboration network

of network science researchers with 1461 nodes. Fourth, SBM: a synthetic SBM graphs

with 1000 nodes. There are 10 communities with size from 350 to 30 nodes (pw = 6 · 10−3,

pb = 2 · 10−5). We approximate the optimal value by running TIM [TXS14], a state of the

art influence maximization algorithm, on each full network. For each real network, pw

and pb are estimated from a different network in the same category (for netscience, we use

another collaboration network, astro-ph1). For SBM, we use another network from the same

distribution. We present a cross-section of results across the datasets but the general trends

hold for all networks. Exhaustive results are in the appendix.

We consider four benchmarks. First, random greedy (RG). RG uses the same query budget

as ARISEN, but queries nodes uniformly randomly. It then runs TIM on the graph composed

of the edges these queries reveal. Hence, RG uses a sophisticated seed selection technique,

but not ARISEN’s sampling procedure. Second, TopK. TopK uses ARISEN’s random walk

sampling (lines 1-3), but seeds the K samples with highest estimated community size. RG

and TopK jointly test the importance of ARISEN’s sophisticated methods for sampling the

network and selecting seed nodes, respectively. Third, recommend, which for each of the

1http://www-personal.umich.edu/ mejn/netdata/
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Figure 1.5: Query complexity as K varies.

Table 1.1: ARISEN’s % influence gain with 25% fewer seeds.

Network/baseline Rec. Snowball RG TopK

homeless-a 24.2 9.9 20.7 91.1
india-1 0.03 6.6 25.7 29.1
netscience 4.8 63.9 35.4 43.4

K nodes, first queries a random node and then seeds their highest degree friend. Fourth,

snowball, which starts from a random node and seeds that node’s highest degree neighbor.

It then seeds the highest degree neighbor of the first seed, and so on. Recommend and

snowball are the most common strategies in the field [VP07].

Figure 3 shows that ARISEN obtains substantially higher influence spread than the

baselines, often exceeding the best baseline by 20-50%. The x axis varies q. Each point gives

the fraction of OPT achieved for that q, averaged over 50 runs. E.g., the point at q = 0.2 for

SBM indicates that ARISEN’s value was 0.8 ·OPT. We take K = 0.01n, focusing on when

few seeds are available (as in previous work [CWW10]). All differences (q ∈ [0.01, 0.7])

are statistically significant (t-test, p < 10−7). The gap between ARISEN and the baselines

is particularly high in the difficult case of small but nonzero q. When q is close to 0, all

algorithms perform close to OPT since little is possible. When q is very high, influence

maximization is easy and nearly any algorithm performs well [CWW10]. Thus, Figure 1.4

presents results where K is varied with q = 0.15 fixed (since this is the hard case). We

see that ARISEN uniformly outperforms the baselines, particularly when K is small. As K

becomes larger, the baselines improve (again because the problem becomes easier). However,
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they are still outperformed by ARISEN.

In particular, we conclude from RG’s poor performance that ARISEN’s random walk

based query scheme substantially improves on uniformly sampling an equivalent number

of nodes. The comparison with TopK confirms that ARISEN’s weighted seed selection is

also necessary since simply seeding the largest communities does poorly. In combination,

this demonstrates that ARISEN’s major elements are both needed to ensure good empirical

performance.

Figure 1.5 examines each algorithm’s query cost (each selects the same number of seeds).

The appendix lists R and T values; here we just focus on the total queries. ARISEN uses more

queries than recommend and snowball, and an equal number to RG and TopK. However,

recommend and snowball use more queries as K increases, with query cost close to ARISEN

for K = 0.02 · n. ARISEN’s query cost is uniformly in the range 0.20 · n− 0.35 · n, a relatively

small portion of the network in absolute terms. This query budget is justified by ARISEN’s

larger influence spread, which makes more efficient use of seed nodes. Intervening to seed

a node is often much more costly than querying its edges, as in the HIV domain where an

intervention is a day-long class. Table 1.1 shows the percent by which ARISEN’s influence

spread exceeds each baseline when the baseline uses K = 0.02 · n but ARISEN uses 25%

fewer seeds. ARISEN outperforms all of the baselines, often by over 20%. Hence, ARISEN

delivers higher influence with fewer costly seeds.

1.8 Conclusion

Optimizing the design of network interventions when information about the network

structure is costly to acquire is a challenging algorithmic problem with many applications.

This chapter investigated one example of this problem, focused on influence maximization

for community-structured networks. In this setting, both strong theoretical guarantees and

promising empirical performance can be obtained by an algorithm which uses only a small

amount of local information. Many challenges remain for future work, e.g., the development

of algorithms which can leverage alternate forms of structure, or sampling schemes tailored
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to other optimization problems.
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Chapter 2

Robust submodular optimization

Submodular functions are ubiquitous due to wide-spread applications ranging from machine

learning, to viral marketing, to mechanism design. Intuitively, submodularity captures

diminishing returns (formalized later). One application of submodularity particularly

relevant to this thesis is the influence maximization problem of selecting the most influential

set of k nodes from a graph. In this chapter, we develop the underlying algorithmic

techniques to optimize the worst case over a set of submodular functions, due to either

uncertainty about the correct objective function or the presence of an explicitly adversarial

actor. In order to demonstrate the generality of this framework, applications are shown in

other areas besides influence maximization, while later chapters will apply these techniques

to the problem of influence maximization under uncertainty in the context of HIV prevention.

As a running example for this chapter, consider the network security game introduced by

Tsai et al. [TYK+10]. A defender can place checkpoints on k edges of a graph. An attacker

aims to travel from a source node to any one of several targets without being intercepted.

Each player has an exponential number of strategies since the defender may choose any set

of k edges and the attacker may choose any path. Hence, previous approaches to computing

the optimal defender strategy were either heuristics with no approximation guarantee, or

else provided guarantees but ran in worst-case exponential time [JKV+11, IOAI16].

However, this game has useful structure. The defender’s best response to any attacker
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mixed strategy is to select the edges which are most likely to intersect the attacker’s

chosen path. Computing this set is a submodular optimization problem [JCT13]. We give

a general algorithm for computing approximate minimax equilibria in zero-sum games

where the maximizing player’s best response problem is a monotone submodular function.

Our algorithm obtains a (1− 1
e )

2−approximation (modulo an additive loss of ε) to the

maximizing player’s minimax strategy. This algorithm runs in pseudopolynomial time

even when both action spaces are exponentially large given access to a weakened form of a

best response oracle for the adversary. Pseudopolynomial means that the runtime bound

depends polynomially on largest value of any single item (which we expect to be a constant

for most cases of interest). Our algorithm approximately solves a non-convex, non-smooth

continuous extension of the problem and then rounds the solution back to a pure strategy

in a randomized fashion. To our knowledge, no subexponential algorithm was previously

known for this problem with exponentially large strategy spaces. Our framework has a wide

range of applications, corresponding to the ubiquitous presence of submodular functions in

artificial intelligence and algorithm design (see Krause and Golovin [KG14] for a survey).

One prominent class of applications is robust submodular optimization. A decision maker

is faced with a set of submodular objectives f1... fm. They do not know which objective is

the true one, and so would like to find a decision maximizing mini fi. Robust submodular

optimization has many applications because uncertainty is so often present in decision-

making. We start by studying the randomized version of this problem, where the decision

maker may select a distribution over actions such that the worst case expected performance

is maximized [KRG11, CLSS17, WYI+17b]. This is equivalent to computing the minimax

equilibrium for a game where one player has a submodular best response. Our techniques

for solving such games also yield an algorithm for the deterministic robust optimization

problem, where the decision maker must commit to a single action. Specifically, we

obtain bicriteria approximation guarantees analogous to previous work [KMGG08] under

significantly more general conditions.

We make three contributions. First, we define the class of submodular best response
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(SBR) games, which includes the above examples. Second, we introduce the EQUATOR

algorithm to compute approximate equilibrium strategies for the maximizing player. Third,

we give example applications of our framework to problems with no previously known

approximation algorithms. We start out by showing that network security games [TYK+10]

can be approximately solved using EQUATOR. We then introduce and solve the robust

version of a classical submodular optimization problem: robust maximization of a coverage

function (which includes well-known applications such as budget allocation and sensor

placement). Finally, we experimentally validate our approach for network security games

and robust budget allocation. We find that EQUATOR produces near-optimal solutions and

easily scales to instances that are too large for previous algorithms to handle.

2.1 Problem description

Formulation: Let X be a set of items with |X| = n. A function f : 2X → R is submodular

if for any A ⊆ B and i ∈ X \ B, f (A ∪ {i})− f (A) ≥ f (B ∪ {i})− f (B). We restrict our

attention to functions that are monotone, i.e., f (A ∪ {i}) − f (A) ≥ 0 for all i ∈ X, A ⊂
X. Without loss of generality, we assume that f (∅) = 0 and hence f (S) ≥ 0 ∀S. Let

F = { f1... fm} be a finite set of submodular functions on the ground set X. m may be

exponentially large. Let ∆(S) denote the set of probability distributions over the elements of

any set S. Oftentimes, we will work with independent distributions over X, which can be

fully specified by a vector x ∈ Rn
+. xi gives the marginal probability that item i is chosen.

Denote by pI
x the independent distribution with marginals x. Let I be a collection of subsets

of X. For instance, we could have I = {S ⊆ X : |S| ≤ k}. We would like to find a minimax

equilibrium of the game where the maximizing player’s pure strategies are the subsets in

I , and the minimizing player’s pure strategies are the functions in F . The payoff to the

strategies S ∈ I and fi ∈ F is fi(S). We call a game in this form a submodular best response

(SBR) game. For the maximizing player, computing the minimax equilibrium is equivalent
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to solving

max
p∈∆(I)

min
f∈F

E
S∼p

[ f (S)] (2.1)

where S ∼ p denotes that S is distributed according to p.

Example: network security games. To make the setting more concrete, we now

introduce one of our example domains, the network security game of Tsai et al. [TYK+10].

There is a graph G = (V, E). There is a source vertex s (which may be a supersource

connected to multiple real sources) and a set of targets T. An attacker wishes to traverse

the network starting from the source and attack a target. Each target tj has a value τj. The

attacker picks a s− tj path for some tj ∈ T. The defender attempts to catch the attacker by

protecting edges of the network. The defender may select any k edges, and the attacker is

caught if any of these edges lies on the chosen path. We use the normalized utilities defined

by Jain et al. [JCT13], which give the defender utility τj > 0 if an attack on tj is intercepted

and 0 if the attack succeeds. Thus, each path P from s to tj for the attacker induces an

objective function fP for the defender: for any set of edges S, fP(S) = τj if S ∩ P 6= ∅,

otherwise fP(S) = 0. fP is easily seen to be submodular [JCT13]. Hence, we have a SBR

game with I = {S ⊆ E : |S| ≤ k} and F = { fP : P is a path from S to T}.
Allowable pure strategy sets: Our running example is when the pure strategies I

of the maximizing player are all size k subsets: I = {S ⊆ X : |S| ≤ k}. In general, our

algorithm works when I is any matroid; this example is called the uniform matroid. We refer

to [KVKV12] for more details on matroids. Here, we just note that matroids are a class of

well-behaved constraint structures which are of great interest in combinatorial optimization.

A useful fact is that any linear objective can be exactly optimized over a matroid by the

greedy algorithm. For instance, consider the above uniform matroid. If each element j has a

weight wj, the highest weighted set of size k is obtained simply by taking the k items with

highest individual weights. Let k = maxS∈I |S| be the size of the largest pure strategy. E.g.,

in network security games k is the number of defender resources. In general, k is the rank

of the matroid.
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We now introduce some notation for the continuous extension of the problem. Let 1S

be the indicator vector of the set S (i.e., an n-dimensional vector with 1 in the entries of

elements that are in S and 0 elsewhere). Let P(M) be the convex hull of {1S : S ∈ I}. Note

that P(M) is a polytope.

Best response oracles: A best response oracle for one player is a subroutine which

computes the pure strategy with highest expected utility against a mixed strategy for the

other player. We assume that an oracle is available for the minimzing player. However, we

require only a weaker oracle, which we call an best response to independent distributions oracle

(BRI). A BRI oracle is only required to compute a best response to mixed strategies which

are independent distributions, represented as the marginal probability that each item in X

appears. Given a vector x ∈ Rn
+, where xi is the probability that element i ∈ X is chosen, a

BRI oracle computes arg min fi∈F ES∼pI
x
[ fi(S)]. We use S ∼ x to denote that S is drawn from

the independent distribution with marginals x. As we will see later, sometimes a BRI oracle

is readily available even when the full best response is NP-hard.

Robust optimization setting: One prominent application of SBR games is robust sub-

modular optimization. Robust optimization models decision making under uncertainty by

specifying that the objective is not known exactly. Instead, it lies within an uncertainty set

U which represents the possibilities that are consistent with our prior information. Our

aim is to perform well in the worst case over all objectives in U . We can view this as a

zero sum game, where the decision maker chooses a distribution over actions and nature

adversarially chooses the true objective from U . A great deal of recent work has been

devoted to the setting of randomized actions, both because randomization can improve

worst-case expected utility [DKW16], and because the randomized version often has much

better computational properties [KRG11, OSU16]. Randomized decisions also naturally fit a

problem setting where the decision maker will take several actions and wants to maximize

their total reward. Any single action might perform badly in the worst case; drawing the

actions from a distribution allows the decision maker to hedge their bets and perform better

overall.
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2.2 Previous work

We discuss related work in two areas. First, solving zero-sum games with exponentially

large strategy sets. Efficient algorithms are known only for limited special cases. One

approach is to represent the strategies in a lower dimensional space (the space of marginals).

We elaborate more below since our algorithm uses this approach. For now, we just note that

previous work [ADH+16, Xu16, CJLBM16] requires that the payoffs be linear in the lower

dimensional space. Linearity is a very restrictive assumption; ours is the first algorithm

which extends the marginal-based approach to general submodular functions. This requires

entirely different techniques.

In practice, large zero sum games are often solved via the double oracle algorithm

[MGB03, BKLP14, BJTK15, HCP09]. Double oracle starts with each player restricted to only

a small number of arbitrarily chosen pure strategies and repeatedly adds a new strategy

for each player until an equilibrium is reached. The new strategies are chosen to be each

player’s best response to the other’s current mixed strategy. This technique is appealing

when equilibria have sparse support, and so only a few iterations are needed. However, it

is easy to give examples where every pure strategy lies in the support of the equilibrium,

so double oracle will require exponential runtime. Our algorithm runs in guaranteed

polynomial time.

Second, we give more background on robust submodular optimization. Krause et al.

[KMGG08] introduced the problem of maximizing the minimum of submodular functions,

which corresponds to Problem 2.1 with the maximizing player restricted to pure strategies.

They show that the problem is inapproximable unless P = NP. They then relax the problem by

allowing the algorithm to exceed the budget constraint (a bicriteria guarantee). Our primary

focus is on the randomized setting, where the algorithm respects the budget constraint but

chooses a distribution over actions instead of a pure strategy. This randomized variant was

studied by Wilder et al. [WYI+17b] for the special case of influence maximization. Krause

et al. [KRG11] and Chen et al. [CLSS17] studied general submodular functions using very

similar techniques: both iterate dynamics where the adversary plays a no-regret learning
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algorithm and the decision maker plays a greedy best response. This algorithm maintains a

variable for every function in F and so is only computationally tractable when F is small.

By contrast, we deal with the setting where F is exponentially large. However, we lose an

extra factor of (1− 1/e) in the approximation ratio.

We also extend our algorithm to obtain bicriteria guarantees for the deterministic robust

submodular optimization problem (where we select a single feasible set). Our guarantees

apply under significantly more general conditions than those of Krause et al. [KMGG08] but

have weaker approximation guarantee; details can be found in the discussion after Theorem

7.

2.3 Preliminaries

We now introduce techniques our algorithm builds on.

Multilinear extension: We can view a set function f as being defined on the vertices of

the hypercube {0, 1}n. Each vertex is the indicator vector of a set. A useful paradigm for

submodular optimization is to extend f to a continuous function over [0, 1]n which agrees

with f at the vertices. The multilinear extension F is defined as

F(x) = ∑
S⊆X

f (S)∏
j∈S

xj ∏
j 6∈S

1− xj.

Equivalently, F(x) = ES∼x[ f (S)]. That is, F(x) is the expected value of f on sets drawn

from the independent distribution with marginals x. F can be evaluated using random

sampling [CCPV11] or in closed form for special cases [IJB14]. Note that for any set S and

its indicator vector 1S, F(1S) = f (S). One crucial property of F is up-concavity [CCPV11].

That is, F is concave along any direction u � 0 (where � denotes element-wise comparison).

Formally, a function F is up-concave if for any x and any u � 0, F(x + ξu) is concave as a

function of ξ.

Correlation gap: A useful property of submodular functions is that little is lost by

optimizing only over independent distributions. Agrawal et al. [ADSY10] introduced the
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concept of the correlation gap, which is the maximum ratio between the expectation of a

function over an independent distribution and its expectation over a (potentially correlated)

distribution with the same marginals. Let D(x) be the set of distributions with marginals x.

The correlation gap κ( f ) of a function f is defined as

κ( f ) = max
x∈[0,1]n

max
p∈D(x)

ES∼p[ f (S)]
ES∼pI

x
[ f (S)]

.

For any submodular function κ ≤ e
e−1 . This says that, up to a loss of a factor 1− 1/e, we

can restrict ourselves to independent distributions when solving Problem 2.1.

Swap rounding: Swap rounding is an algorithm developed by Chekuri et al. [CVZ10]

to round a fractional point in a matroid polytope to an integral point. We will use swap

rounding to convert the fractional point obtained from the continuous optimization problem

to a distribution over pure strategies. Swap rounding takes as input a representation of

a point x ∈ P(M) as a convex combination of pure strategies. It then merges these sets

together in a randomized fashion until only one remains. For any submodular function

f and its multilinear extension F, the random set R satisfies E[ f (R)] ≥ F(x). I.e., swap

rounding only increases the value of any submodular function in expectation.

2.4 Algorithm for SBR games

In this section, we introduce the EQUATOR (EQUilibrium via stochAsTic frank-wOlfe and

Rounding) algorithm for computing approximate equilibrium strategies for the maximizing

player in SBR games. Since the pure strategy sets can be exponentially large, it is unclear

what it even means to compute an equilibrium: representing a mixed strategy may require

exponential space. Our solution to this dilemma is to show how to efficiently sample pure

strategies from an approximate equilibrium mixed strategy. This suffices for the maximizing

player to implement their strategy. Alternatively, we can build an approximate mixed

strategy with sparse support by drawing a polynomial number of samples and outputing

the uniform distribution over the samples. In order to generate these samples, EQUATOR
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first solves a continuous optimization problem, which we now describe.

The marginal space: A common meta-strategy for solving games with exponentially

large strategy sets is to work in the lower-dimensional space of marginals. I.e., we keep

track of only the marginal probability that each element in the ground set is chosen. To

illustrate this, let p be a distribution over the pure strategies I , and x ∈ P(M) denote

a vector giving the marginal probability of selecting each element of X in a set drawn

according to p. Note that x is n-dimensional while p could have dimension up to 2n.

Previous work has used marginals for linear objectives. A linear function with weights

w satisfies ES∼p

[
∑j∈S wj

]
= ∑n

j=1 wjPr[j ∈ S] = ∑n
j=1 wjxj, so keeping track of only the

marginal probabilities x is sufficient for exact optimization. However, submodular functions

do not in general satisfy this property: the utilities will depend on the full distribution p, not

just the marginals x. We will treat a given marginal vector x as representing an independent

distribution where each j is present with probability xj (i.e., x compactly represents the full

distribution pI
x). The expected value of x under any submodular function is exactly given

by its multilinear extension, which is a continuous function.

Continuous extension: Let G = mini Fi be the pointwise minimum of the multilinear

extensions of the functions in F . Note that for any marginal x, G(x) is exactly the objective

value of pI
x for Problem 2.1. Hence, optimizing G over all x ∈ P is equivalent to solving

Problem 2.1 restricted to independent distributions. Via the correlation gap, this restriction

only loses a factor (1− 1/e): if the optimal full distribution is pOPT, then the independent

distribution with the same marginals as pOPT has at least (1 − 1/e) of of pOPT’s value

under any submodular function. Previous algorithms [CCPV11, BMBK17] for optimizing

up-concave functions like G do not apply because G is nonsmooth (see below). We introduce

a novel Stochastic Frank-Wolfe algorithm which smooths the objective with random noise.

Its runtime does not depend directly on |F | at all; it only uses BRI calls.

Rounding: Once we have solved the continuous problem, we need a way of mapping

the resulting marginal vector x to a distribution over the pure strategies I . Notice that if

we simply sample items independently according to x, we might end up with an invalid
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set. For instance, in the uniform matroid which requires |S| ≤ k, an independent draw

could result in more than k items even if ∑i xi ≤ k. Hence, we sample pure strategies by

running the swap rounding algorithm on x. In order to implement the maximizing player’s

equilibrium strategy, it suffices to simply draw a sample whenever a decision is required.

If a full description of the mixed strategy is desired, we show that it is sufficient to draw

Θ
( 1

ε2 (log |F |+ log 1
δ )
)

independent samples via swap rounding and return the uniform

distribution over the sampled pure strategies.

To sum up, our strategy is as follows. First, solve the continuous optimization problem

to obtain marginal vector x. Second, draw sampled pure strategies by running randomized

swap rounding on x.

2.4.1 Solving the continuous problem

The linchpin of our algorithmic strategy is solving the optimization problem maxx∈P(M) G(x).

In this section, we provide the ingredients to do so.

Properties of G: We set the stage with four important properties of G (proofs are given

in the supplement). First, while G is not in general concave, it is up-concave:

Lemma 2. If F1...Fm are up-concave functions, then G = mini Fi is up-concave as well.

The proof is similar to the proof that the minimum of concave functions is concave.

Up-concavity of G is the crucial property that enables efficient optimization.

Second, G is Lipschitz. Specifically, let M = maxi,j fi({j}) be the maximum value of any

single item. It can be shown that ||∇Fi||∞ ≤ M ∀i since (intuitively), the gradient of Fi is

related to the marginal gain of items under fi. From this we derive

Lemma 3. G is M-Lipschitz in the `1 norm.

Third, G is not smooth. For instance, it is not even differentiable at points where the

minimizing function is not unique. This complicates the problem of optimizing G and

renders earlier algorithms inapplicable.
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Algorithm 3 EQUATOR(BRI, FO, LO, u, c, K, r)

1: x0 ← u1
2: //Stochastic Frank-Wolfe algorithm
3: for ` = 1...K do
4: for t = 1...c do
5: Draw z ∼ µ(u)
6: Ft ← BRI(x`−1 + z)
7: ∇̃`

t ← FO(Ft, x`−1 + z)
8: end for
9: ∇̃` ← 1

c ∑c
t=1 ∇̃`

t
10: v` ← LO(∇̃`)
11: x` ← x`−1 + 1

K v`

12: end for
13: x f inal ← xK − u1
14: //Sample from equilibrium mixed strategy
15: Return r samples of SwapRound(x f inal)

Fourth, at any point x where the minimizing function Fi is unique, ∇G(x) = ∇Fi(x).

Hence, we can compute ∇G(x) by calling the BRI to find Fi, and then computing ∇Fi(x).

In general, ∇Fi(x) can be computed by random sampling [CCPV11], and closed forms are

known for particular cases [IJB14].

Randomized smoothing: We will solve the continuous problem maxx∈P(M) G(x). Known

strategies for optimizing up-concave functions [BMBK17] rely crucially on G being smooth.

Specifically, ∇G must be Lipschitz continuous. Unfortunately, G is not even differentiable

everywhere. Even between two points x and y where G is differentiable, ∇G(x) and ∇G(y)

can be arbitrarily far apart if arg mini Fi(x) 6= arg mini Fi(y). No previous work addresses

nonsmooth optimization of an up-concave function.

To resolve this issue, we use a carefully calibrated amount of random noise to smooth

the objective. Let µ(u) be the uniform distribution over the `∞ ball of radius u. We define

the smoothed objective Gµ(x) = Ez∼µ(u) [G(x + z)] which averages over the region around

x. This (and similar) techniques have been studied in the context of convex optimization

[DBW12]. We show that Gµ is a good smooth approximator of G.

Lemma 4. Gµ has the following properties:

48



• Gµ is up-concave.

• |Gµ(x)− G(x)| ≤ Mnu
2 ∀x.

• Gµ is differentiable, with ∇Gµ(x) = E[∇G(x + z)].

• ∇Gµ is M
µ −Lipschitz continuous in the `1 norm.

Hence, we can use Gµ as a better-behaved proxy for G since it is both smooth and close

to G everywhere in the domain. The main challenge is that Gµ and its gradients are not

available in closed form. Accordingly, we randomly sample values of the perturbation z

and average over the value of G (or its gradient) at these sampled points.

2.4.2 Stochastic Frank-Wolfe algorithm (SFW)

We propose the SFW algorithm (Algorithm 3) to optimize Gµ. SFW generates a series of

feasible points x0...xK, where K is the number of iterations. Each point is generated from the

last via two steps. First, SFW estimates the gradient of Gµ. Second, it takes a step towards

the point in P which is furthest in the direction of the gradient. To carry out these steps,

SFW requires three oracles. First, a linear optimization oracle LO which, given an objective

w, returns arg maxv∈P(M) w>v. In the context of our problem, LO outputs the indicator

vector of the set S ∈ I which maximizes the linear objective w. S can be efficiently found

via the greedy algorithm. The other two oracles concern gradient evaluation. One is the

BRI oracle discussed earlier. The other is a stochastic first-order oracle FO which, for any

function Fi and point x, returns an unbiased estimate of ∇Fi(x).

The algorithm starts at x0 = 0. At each iteration `, it averages over c calls to FO to

compute a stochastic approximation ∇̃` to ∇Gµ(x`−1) (Lines 4-9). For each call, it draws

a random perturbation z ∼ µ(u) and uses the BRI to find the minimizing F at x`−1 + z.

It then queries FO for an estimate of ∇F(x`−1 + z). Lastly, it takes a step in the direction

of v` = LO(∇̃`) by setting x` = x`−1 + 1
K v` (Lines 10-11). Since x` at each iteration is a

combination of vertices of P(M), the output is guaranteed to be feasible. The intuition

for why the algorithm succeeds is that it only moves along nonnegative directions (since
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v` is always nonnegative). This is in contrast to gradient-based algorithms for concave

optimization, which move in the (possibly negative) direction v` − x`. As an up-concave

function, Gµ is concave along all nonegative directions. By moving only in such directions

we inherit enough of the nice properties of concave optimization to obtain a (1− 1/e)−
approximation.

A small technical detail is that adding random noise z could result in negative values,

for which the multilinear extension is not defined. To circumvent this, we start the algorithm

at x0 = u1 (i.e., with small positive values in every entry) and then return x f inal = xK − u1

(Line 13).

2.4.3 Theoretical bounds

Let T1 be the runtime of the linear optimization oracle and T2 be the runtime of the first-order

oracle. We prove the following guarantee for SFW:

Theorem 4. For any ε, δ > 0, there are parameter settings such that SFW finds a solution xK

satisfying G(xK) ≥ (1− 1
e )OPT− ε with probability at least 1− δ. The runtime of the algorithm

is Õ
(

T1
M2k2n

ε2 + T2
k4 M4n

ε4 log 1
δ

)
1.

We remark that T1 is small since linear optimization over P(M) can be carried out by

a greedy algorithm. For instance, the runtime is T1 = O (n log n) for the uniform matroid,

which covers many applications. T2 is typically dominated by the runtime of the BRI since it

is known how to efficiently compute the gradient of a submodular function [CCPV11, IJB14].

Based on this result, we show the following guarantee on a single randomly sampled set

that EQUATOR returns after applying swap rounding to the marginal vector x f inal .

Theorem 5. With r = 1, EQUATOR outputs a set S ∈ I such that mini E[ fi(S)] ≥ (1 −
1
e )

2OPT − ε with probability at least 1− δ. Its time complexity is the same as SFW.

Proof. Suppose that pOPT is the distribution achieving the optimal value for Problem 2.1.

Let x∗ be the optimizer for the problem maxx∈P(M) G(x). That is, x∗ can be interpreted as

1The Õ notation hides logarithmic terms
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the marginals of the independent distribution which maximizes mini ES∼pI
x∗
[ fi(S)]. With

slight abuse of notation, let pI
OPT be the independent distribution with the same marginals

as pOPT. By applying the correlation gap to each fi ∈ F and taking the min, we have

min
fi∈F

E
S∼pOPT

[ fi(S)] ≤
e

e− 1
min
fi∈F

E
S∼pI

OPT

[ fi(S)].

By definition of x∗, G(x∗) ≥ min fi∈F ES∼pI
OPT

[ fi(S)]. Hence, we have that G(x∗) ≥
(1− 1/e)mini ES∼pI

x∗
[ fi(S)] = (1− 1/e)OPT. Via Theorem 4, the marginal vector x that our

algorithm finds satisfies G(x) ≥ (1− 1
e )G(x∗)− ε ≥ (1− 1

e )
2OPT − ε. Lastly, Chekuri et al.

[CVZ10] show that swap rounding outputs an independent set S satisfying E[ fi(S)] ≥ Fi(S)

for any fi ∈ F , which completes the proof.

This guarantee is sufficient if we just want to implement the maximizing player’s strategy

by sampling an action. We also prove that if a full description of the maximizing player’s

mixed strategy is desired, drawing a small number of independent samples via swap

rounding suffices:

Algorithm 4 Efficient bicriteria approximation

1: Run EQUATOR to obtain x f inal .
2: for j = 1...e log 1

δ do
3: run SwapRound(x f inal)

8 log |F |
ε3 + 1 times, yielding Sj

1...Sj
r.

4: Sj ← Sj
1 ∪ Sj

2 ∪ ....∪ Sj
r

5: end for
6: return arg maxSj min fi∈F fi(Sj)

Theorem 6. Draw r = O
( 1

ε3

(
log |F |+ log 1

δ

))
samples using independent runs of randomized

swap rounding. The uniform distribution on these samples is a (1− 1
e )

2− ε approximate equilibrium

strategy for the maximizing player with probability at least 1− δ. The runtime is O
(

rk2 M2n
ε

)
.

This also gives a simple way of obtaining a single feasible set (pure strategy) which

has a bicriteria guarantee for the robust optimization problem. As pointed out by Chen

et al. [CLSS17], since the fi are all monotone, taking the union of the sets output by swap
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rounding gives a single set with at least as much value. Algorithm 4 implements this

procedure. It first solves the fractional problem by running EQUATOR. Then, it carries out a

series of independent iterations. Each iteration j draws 8 log |F |
ε3 sets via swap rounding and

stores their union Sj. It then returns the best of the Sj. Via our concentration bound for the

distribution produced in each iteration (Theorem 6), each iteration succeeds in producing a

“good" set with probability at least 1
e . Algorithm 4 runs e log 1

δ iterations so that at least one

succeeds with probability at least 1− δ.

Theorem 7. Algorithm 4 returns a single set S which is the union of at most 8 log |F |
ε3 + 1 elements

of I and satisfies min fi∈F fi(S) ≥
(
1− 1

e

)2
maxS∗∈I min fi∈F fi(S∗)− ε with probability at least

1− δ.

The strongest existing bicriteria guarantee is for the SATURATE algorithm of Krause

et al. [KMGG08], which outputs a set which matches the optimal value attainable using a

set of size k using
(

log
(

maxv∈X ∑ fi∈F fi({v})
)
+ 1
)

k items. Our S maintains logarithmic

dependence on |F |, but also contains dependence on ε. Moreoever, it is only a (1− 1
e )

2-

approximation to the optimal solution quality. However, our result is much more general

than that of Krause et al. and handles situations that SATURATE cannot. First, our result

applies when F is accessible only through an oracle, where SATURATE relies on explicitly

enumerating the functions. Second, our result applies when I is any matroid, where

SATURATE applies only to cardinality-constrained problems. To our knowledge, this is the

first computationally efficient bicriteria algorithm under either condition.

2.5 Improving the approximation ratio

In this section, we examine the conditions under which it is possible to improve EQUATOR’s(
1− 1

e

)2
-approximation to

(
1− 1

e

)
. The earlier analysis lost a factor

(
1− 1

e

)
in two places:

the use of the correlation gap to bound the loss introduced by only tracking marginals, and

the use of SFW to solve the continuous relaxation. While the second factor is difficult to

improve, we can eliminate the loss from the correlation gap when a stronger best response
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oracle for the adversary is available. Specifically, we define a best response to mixture of

independent distributions (BRMI) oracle to be an algorithm which, given a list of marginal

vectors x1...xρ, outputs

arg min
fi∈F

1
ρ

ρ

∑
j=1

Fi(xj).

We will be interested in BRMI oracles which take time polynomial in ρ. As the name implies,

Algorithm 5 EQUATOR with improved approximation guarantee

1: Set ρ = O
(

W2 log |F |
ε2

)
2: Use SFW to solve the problem maxx1..xρ∈×ρ

j=1P min fi∈F
1
ρ ∑

ρ
j=1 Fi(xj), obtaining x1..xρ

3: Set r = O
(

1
ε3 log

(
|F |ρ

δ

))
4: for i = 1...ρ do
5: Draw sets Si

1...Si
r independently as SwapRound(xi).

6: end for
7: Return the uniform distribution on {Si

j : i = 1...ρ, j = 1...r}.

a BRMI oracle can compute adversary best responses to any distribution which is explicitly

represented as a mixture of independent distributions with given marginals. By contrast,

a BRI is restricted to a single independent distribution. A BRMI is a considerably more

powerful oracle because, with sufficiently large ρ, any distribution can be arbitrarily well-

approximated by a mixture of independent distributions (a statement which is formalized

below). Hence, the algorithm we propose maintains ρ copies of the decision variables x1...xρ

for a value of ρ which will be set later. We aim to maximize

max
x1..xρ∈×ρ

j=1P
min
fi∈F

1
ρ

ρ

∑
j=1

E
S∼xj

[ fi(S)]

which we recognize as being equivalent to the problem

max
x1..xρ∈×ρ

j=1P
min
fi∈F

1
ρ

ρ

∑
j=1

Fi(xj) (2.2)
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It is easy to check that 1
ρ ∑

ρ
j=1 Fi(xj) is an up-concave function which inherits all of the

smoothness properties of the Fi. Hence, we can use SFW to obtain a
(
1− 1

e

)
-approximate

solution to Problem 2.2 provided that we have a BRMI oracle with which to compute

gradients. After solving Problem 2.2, we can use swap rounding to produce feasible sets

with guaranteed approximation ratio. For a single set, we first select a j ∈ {1...ρ} uniformly

at random and then run swap rounding on xj. To output a full distribution, as in Theorem

6, we draw r = O
(

1
ε3 log

(
|F |ρ

δ

))
samples from each of the xj and then output the uniform

distribution over the combined set of samples. The extra logarithmic dependence on ρ

ensures that we can take a final union bound over the ρ batches of swap rounding. The

entire procedure is summarized in Algorithm 5. We let W be an upper bound on the value

of f for any feasible set: W ≥ max fi∈F ,S∈I fi(S). Note that W ≤ nM always holds via

submodularity, but tighter bounds might apply for particular functions.

We have the following approximation guarantee for Algorithm 5. We note that the idea

of optimizing over a mixture of independent distributions has been used in [DX17], but we

prove Lemma 5 (establishing that a good mixture exists) for completeness.

Theorem 8. Given access to a BRMI oracle for any SBR game instance, Algorithm 5 returns a

distribution p which satisfies min fi∈F ES∼p [ fi(S)] ≥
(
1− 1

ε

)
OPT − ε with probability at least

1− δ.

Proof. We first establish that there exists a near-optimal distribution over elements of I with

support size at most O
(

W2 log |F |
ε2

)
:

Lemma 5. Take any collection of functions F with max fi∈F ,S∈I fi(S) ≤ W and a distribution

p ∈ ∆(I). There exists a distribution q supported on at most ρ = O
(

W2 log |F |
ε2

)
elements of I

which satisfies ES∼q[ fi(S)] ≥ ES∼p[ fi(S)]− ε for all fi ∈ F .

Proof. We will use the probabilistic method. Suppose that we draw ρ = W2 log |F |
ε2 samples

S1...Sρ independently from p and let q be the uniform distribution on the samples. Fix an

arbitrary function fi. Via Hoeffding’s inequality, we have that
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Pr

[
E

S∼p
[ fi(S)]−

1
r

r

∑
i=1

fi(S) ≥ ε

]
≤ e−

2rε2

W2 ≤ 1
|F |2

and this holds simultaneously for all scenarios y with probability at least 1− 1
|F | > 0 via

union bound. That is, we have a random sampling procedure which outputs a distribution

q satisfying ES∼q[ fi(S)] ≥ ES∼p[ fi(S)]− ε for all fi ∈ F with positive probability. Via the

probabilistic method we are guaranteed that such a distribution (i.e., one which is a uniform

distribution on at most ρ elements of I) exists.

Now, note that Algorithm 5 maximizes over the set ×ρ
j=1P , which includes the distribu-

tion q. Via the guarantee for SFW (Theorem 4), SFW returns x1...xρ satisfying

min
fi∈F

1
ρ

ρ

∑
j=1

Fi(xj) ≥
(

1− 1
e

)
OPT − ε.

We ignore for convenience the issue of adjusting all of the ε values by a constant factor.

Now we just need to establish that the rounding procedure succeeds. A simple variation

on the proof of Theorem 6 suffices: we claim that 1
r ∑r

a=1 fi(Sa
j ) ≥ ES∼xj [ fi(S)]− ε holds for

each i, j with probability at least 1− δ
ρ|F | via our choice of r. Taking union bound over all

i = 1...|F | and j = 1...r completes the proof.

2.6 Applications

We now give several examples of domains that our algorithm can be applied to. In each of

these cases, we obtain the first guaranteed polynomial time constant-factor approximation

algorithm for the problem. The key part of both applications is developing a BRI (the first

order oracle is easily obtained in closed form via straightforward calculus).

Network security games: Earlier, we formulated network security games in the SBR

framework. All we need to solve it using EQUATOR is a BRI oracle. The full attacker

best response problem is known to be NP-hard [JKV+11]. However, it turns out the best

response to an independent distribution is easily computed. Index the set of paths and let Pi
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be the ith path, ending at a target with value τi. Let P(tj) be the set of all paths from the

(super)source s to tj. Let fi be the corresponding submodular objective. Given a defender

mixed strategy x, the attacker best response problem is to find mini ES∼x[ fi(S)]. We can

rewrite this as

min
i

E
S∼x

[ fi(S)] = min
i

E
S∼x

[τi1[S ∩ Pi 6= ∅]]

= min
tj∈T

τj min
P∈P(tj)

E
S∼x

[1[S ∩ P 6= ∅]]

= min
tj∈T

τj min
P∈P(tj)

1−∏
e∈P

[1− xe]

We can now solve a separate problem for each target tj and then take the one with lowest

value. For each tj, we solve a shortest path problem. We aim to find a s− tj path which

maximizes the product of the the weights 1− xe on each edge. Taking logarithms, this is

equivalent to finding the path which minimizes −∑e∈P log(1− xe) = ∑e∈P log 1
1−xe

. This is

a shortest path problem in which each edge has nonnegative weight log 1
1−xe

, and so can be

solved via Dijkstra’s algorithm. With the attacker BRI in hand, applying EQUATOR yields

the first subexponential-time algorithm for network security games.

Robust coverage and budget allocation: Many widespread applications of submodular

functions concern coverage functions. A coverage function takes the following form. There

a set of items U, and each j ∈ U has a weight wj. The algorithm can choose from a ground

set X = {a1...an} of actions. Each action ai covers a set Ai ⊆ U. The value of any set of

actions is the total value of the items that those actions cover: f (S) = ∑j∈⋃i∈S Ai
wj. We can

also consider probabilistic extensions where action ai covers each j ∈ Ai independently

with probability pij. This framework includes budget allocation, sensor placement, facility

location, and many other common submodular optimization problems. Here we consider a

robust coverage problem where the weights w are unknown. For concreteness, we focus on

the budget allocation problem, but all of our logic applies to general coverage functions.

Budget allocation models an advertiser’s choice of how to divide a finite budget B

between a set of advertising channels. Each channel is a vertex on the left hand side L of a
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bipartite graph. The right hand R consists of customers. Each customer v ∈ R has a value

wv which is the advertiser’s expected profit from reaching v. The advertiser allocates their

budget in integer amounts among L. Let y(s) denote the amount of budget allocated to

channel s ∈ L. The advertiser solves the problem

max
y:||y||1≤B

fw(y) = ∑
v∈R

wv

[
1−∏

s∈L
(1− psv)

y(s)

]

where psv is the probability that one unit of advertising on channel s will reach customer

v. This a probabilistic coverage problem where the action set X contains B copies2 of each

s ∈ L and the feasible decisions I are all size B subsets of X. Choosing b copies of node s

corresponds to setting y(s) = b. Budget allocation has been the subject of a great deal of

recent research [AGT12, SKIK14, MIFK15].

In the robust optimization problem, the profits w are not exactly known. Instead, they

belong to a polyhedral uncertainty set U . This is very realistic: while an advertiser may

be able to estimate the profit for each customer from past data, they are unlikely to know

the true value for any particular campaign. We remark that Staib and Jegelka [SJ17] also

considered a robust budget allocation problem, but their problem has uncertainty on the

probabilities pst, not the profits w. Further, they consider a continuous problem without the

complication of rounding to discrete solutions.

As an example uncertainty set, consider the D-norm uncertain set, which is common in

robust optimization [BPS04, SJ17]. The uncertainty set is defined around a point estimate ŵ

as

U ŵ
γ = {w : ∃c ∈ [0, 1]|R|, wi = (1− ci)ŵi, ||c||1 ≤ γ}.

This can be thought of as allowing an adversary to scale down each entry of ŵ with

a total budget of γ. In our case, ŵ is the advertiser’s best estimate from past data, and

2We use this formulation for simplicity, but it is possible to use only log B copies of each node [EN16].
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they would like to perform well for all scenarios within U ŵ
γ . γ defines the advertiser’s

tolerance for risk. The problem we want to solve is maxp∈∆(I) minw∈U ŵ
γ

Ey∼p[ fw(y)], which

we recognize as an instance of Problem 2.1. For any fixed distribution p, we have by linearity

of expectation

E
y∼p

[ fw(y)] = ∑
v∈R

wv E
y∼p

[
1−∏

s∈L
(1− psv)

y(s)

]
.

Note that the inner expectation (which is the total probability that each v ∈ R is reached)

is constant with respect to w. Hence, the adversary’s best response problem of computing

minw∈U Ey∼p[ fw(y)] is a linear program and can be easily solved. The coefficients of this LP

(the inner expectation in the above sum) can easily be computed exactly for any independent

distribution. Further, since any LP has an optimal solution among the vertices of U ŵ
γ , we

can without loss of generality restrict the adversary’s pure strategies to a finite (though

exponentially large) number.

Lastly, we remark that it also possible to obtain a BRMI for this problem. For any

distribution p, we can find a best response via linear programming provided that the

coefficients Ey∼p

[
1−∏s∈L(1− psv)y(s)

]
can be computed for each v ∈ R. This is easy when

p is given explicitly as a mixture of independent distributions x1...xρ since we just average

over the corresponding term for each individual xi. Hence, we can use Algorithm 5 to

obtain a
(
1− 1

e

)
-approximation. Nevertheless, we use the original EQUATOR algorithm in

our experiments and find that it performs near-optimally despite its theoretically weaker

approximation ratio.

2.7 Experiments

We now show experimental results from applying EQUATOR to these two domains.

Network security games: We first study the network security game defined above. We

compare EQUATOR to the SNARES algorithm [JCT13] which is the current state of the art

algorithm with guaranteed solution quality. SNARES uses a double oracle approach to find

a globally optimal solution. However, it incorporates several domain-specific heuristics which
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Figure 2.1: Experimental results for network security games.

substantially improve its runtime over a standard implementation of double oracle. We note

that Iwashita et al. [IOAI16] proposed a newer double-oracle style algorithm which first

preprocesses the graph to remove unnecessary edges. We do not compare to this approach

because the preprocessing step can be applied equally well to either EQUATOR or double

oracle. We use random geometric graphs, which are commonly used to assess algorithms

for this domain due to their similarity to real world road networks [JCT13, IOAI16]. As in

Jain et al. [JCT13], we use density d = 0.1 with the value of each target drawn uniformly

at random in [0, 100]. We set k to be one percent of the number of edges. Each data point

averages over 30 random instances. EQUATOR was run with K = 100, c = 60, u = 0.1.

Figure 2.1 shows the results. Figures 2.1(a) and 2.1(b) vary the network size n with three

randomly chosen source and target nodes. Figure 2.1(a) plots utility (i.e., how much loss

is averted by the defender’s allocation) as a function of n. Error bars show one standard

deviation. We see that EQUATOR obtains utility within 6% of SNARES, which computes

a global optimum. Figure 2.1(b) shows runtime (on a logarithmic scale) as a function of

n. SNARES was terminated after 10 hours for graphs with 250 nodes, while EQUATOR
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easily scales to 1000 nodes. Next, Figures 2.1(c) and 2.1(d) show results as the number

of sources and targets grows. As expected, utility decreases with more sources/targets

since the number of resources is constant and it becomes harder to defend the network.

EQUATOR obtains utility within 4% of SNARES. However, SNARES was terminated after

10 hours for just 5 source/targets, while EQUATOR runs in under 25 seconds with 20

source/targets.

Robust budget allocation: We compare three algorithms for robust budget allocation.

First, EQUATOR. Second, double oracle. We use the greedy algorithm for the defender’s best

response (which is a (1− 1/e)-approximation) since the exact best response is intractable.

For the adversary’s best response, we use the linear program discussed in the section on

robust coverage. Third, we compare to “greedy", which greedily optimizes the advertiser’s

return under the point estimate ŵ. Greedy was implemented with lazy evaluation [Min78]

which greatly improves its runtime at no cost to solution value. We generated random

bipartite graphs with |L| = |R| = n where each potential edge is present with probability 0.2

and for each edge (u, v), pu,v is draw uniformly in [0, 0.2]. ŵ was randomly generated with

each coordinate uniform in [0.5, 1.5]. Our uncertainty set is the D-norm set around ŵ with

γ = 1
2 n, representing a substantial degree of uncertainty. The budget was B = 5 + 0.01 · n

since the problem is hardest when B is small relative to n. EQUATOR was run with

K = 20, c = 10, u = 0.1.

Figure 2.2 shows the results. Each point averages over 30 random problem instances

(error bars would be hidden under the markers). Figure 2.2(a) plots the profit obtained by

each algorithm when the true w is chosen as the worst case in U ŵ
γ , with n increasing on

the x axis. Figure 2.2(b) plots the average runtime for each n. We see that double oracle

produces highly robust solutions. However, for even n = 500, its execution was halted after

10 hours. Greedy is highly scalable, but produces solutions that are approximately 40% less

robust than double oracle. EQUATOR produces solution quality within 7% of double oracle

and runs in less than 30 seconds with n = 1000.

Next, we show results on a real world dataset from Yahoo webscope [Yah07]. The dataset
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Figure 2.2: Experimental results for budget allocation.

logs bids placed by advertisers on a set of phrases. We create a budget allocation problem

where the phrases are advertising channels and the accounts are targets; the resulting

problem has |L| = 1000 and |R| = 10, 394. Other parameters are the same as before. We

obtain instances of varying size by randomly sampling a subset of L. Figures 2.2(c-d) show

results (averaging over 30 random instances). In Figure 2.2(c), we see that both double oracle

and EQUATOR find highly robust solutions, with EQUATOR’s solution value within 8% of

that of double oracle. By contrast, greedy obtains no profit in the worst case for |L| > 20,

validating the importance of robust solutions on real problems. In Figure 2.2(d), we observe

that double oracle was terminated after 10 hours for n = 500 while EQUATOR scales to

n = 1000 in under 40 seconds. Hence, EQUATOR is empirically successful at finding highly

robust solutions in an efficient manner, complementing its theoretical guarantees.
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Discussion and conclusion

This chapter introduces the class of submodular best response games, capturing the zero

sum interaction between two players when one has a submodular best response problem.

Examples include network security games and robust submodular optimization problems.

We study the case where the set of possible objective functions is very large (exponential

in the problem size), arising from an underlying combinatorial structure. Our main result

is a pseudopolynomial time algorithm to compute an approximate minimax equilibrium

strategy for the maximizing player when the set of submodular objectives admits a certain

form of best response oracle. We instantiate this framework for two example domains,

and show experimentally that our algorithm scales to much larger instances than previous

approaches.

One interesting direction for future work is to extend this framework to new application

domains. Submodular structure is present in many problems, e.g., sensor placement in water

networks [KMGG08] or cyber-security monitoring [HLP+15]. Both seem natural domains

for future work, but designing appropriate best response oracles may be algorithmically

challenging. Another open direction is to extend our framework to cases where only

approximate best responses are available for the adversary. This would enable applications

even in settings where an exact BRI is computationally intractable.
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Chapter 3

CHANGE: piloting a field-ready

approach to influence maximization

This chapter presents and field-tests a novel, practical agent for influence maximization,

the challenge of selecting a small set of seed nodes in a social network who will diffuse

information to many others. Such techniques have important applications ranging from

preventative health [VP07, APMV01] to international development [BCDJ13]. It is inherently

a multiagent problem because nodes (agents) make decisions in response to those around

them [ZPV15, MS12].

We are particularly motivated by the challenge of preventing HIV spread among home-

less youth [RTC+12, YR11, RMRB07] (although our contributions would also assist other

public health interventions). Here, influence maximization is used to select homeless youth

who will serve as peer leaders and spread messages about HIV prevention through their social

network. Pilot studies in this domain have shown that algorithmic approaches have great

promise, substantially outperforming status-quo heuristics [YWR+17]. However, current

algorithms have a high barrier to entry: they require a great deal of time to gather the

complete social network, expertise to select appropriate parameters, and computational

power to run the algorithms. None of these are likely available to the resource-strained

service providers ultimately responsible for deployment.
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Gathering network data is particularly onerous because it requires individually surveying

over a hundred youth. Network collection is more time intensive than simple survey

methods, requiring days of time for a dedicated team of social work researchers. It is

infeasible for service providers with many other responsibilities.

The other barriers are also serious impediments to wide-scale adoption of influence

maximization. Service providers will not have access to the high-performance computing

resources required by previous algorithms, where high computational cost is often incurred

to find solutions robust to unknown parameters. For instance, DOSIM, a state of the

art algorithm for robust influence maximization [WYI+17b], requires hours on a high-

performance computing system. A deployed system would need to run in minutes on a

laptop.

This chapter presents CHANGE (CompreHensive Adaptive Network samplinG for social

influencE), a novel, end-to-end agent for influence maximization which addresses the above

barriers via a set of algorithmic contributions. CHANGE is easy to deploy, but this simplicity

is crucially enabled by a series of insights into the social structure of homeless youth (which

may be useful for other vulnerable populations). We conducted a pilot test of CHANGE’s

performance in a real deployment by a drop-in center serving homeless youth in a major

U.S. city. CHANGE was used to plan a series of interventions designed to spread HIV

awareness among the youth. CHANGE obtained comparable influence spread to state of the art

algorithms while surveying only 18% of nodes for network data, a finding which is backed by

additional simulation results.

Overall, CHANGE offers a practical, field-tested vehicle for deployed influence max-

imization which drastically lowers the barrier to entry. To our knowledge, this is the first

real-world pilot study of a network sampling algorithm for influence maximization and only the

second ever field test of any influence maximization algorithm.

Overview of algorithmic contributions: We now summarize how CHANGE handles

the challenges above. We discuss related work in Section 3.1; however, none addresses these

challenges.
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First, to address the data gathering challenge, we present an easily deployable sampling

protocol which randomly selects a small set of youth to interview. For each of these youth,

a randomly chosen neighbor is also interviewed. We show that this procedure gathers

enough of the network to enable influence maximization even though it surveys only a

small number of nodes directly.

Second, to address computational power challenge (which in turn stems from unknown

parameters), we present a heuristic for selecting influence maximization solutions which

are robust to uncertainty in the probability p that influence will spread. We show that

this heuristic finds solutions which obtain approximately 90% of the maximum possible

influence spread under any value for p. Importantly, this heuristic runs in minutes on a

laptop, while DOSIM (the previously proposed algorithm for this problem) requires hours

to days of time on a high performance cluster.

Third, we integrate these components with an adaptive greedy algorithm for planning

interventions and prove the first theoretical guarantee for influence maximization under

execution errors. The challenge is that some youth selected as peer leaders may not

attend the intervention [WYI+17b, YWR+17]. Our algorithm selects its action with such

uncertainties in mind, observes which youth do attend, and then plans the next round using

this observation. We prove that it obtains a constant-factor approximation to the optimal

adaptive policy.

Overview of field deployment contributions: We conducted two pilot studies of

CHANGE, each addressing distinct questions.

First, we conducted a feasibility study with two objectives. (i) We confirm that CHANGE’s

mechanism for sampling the network to gather edge data is implementable with a homeless

youth population. This is nontrivial because homeless youth are often difficult to locate,

making finding particular youth to query for network ties difficult. (ii) We validate that the

data gathered is sufficiently accurate to enable influence maximization. Self-reported ties are

subject to bias and forgetting [Bre00], making it important to investigate whether they are

accurate enough to find influential nodes. This point is of broader interest, since previous
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influence maximization work has largely used self-reported ties [YWR+17, WYI+17b], but

no previous field study has validated their accuracy for influence maximization. To address these

questions we collected network data from 72 youth at a drop-in center via a range of

methods: CHANGE’s sampling mechanism, self-reports from the entire network, field

observations by research staff, and interviews with staff members. Our results show that

CHANGE’s sampling mechanism is feasible, and that self-reported data is sufficient for

high-quality influence maximization.

Second, we conduct an intervention study of the entire CHANGE agent with an additional

set of 64 homeless youth. This includes network data collection, peer leader selection, and

HIV awareness trainings for the selected peer leaders. We then conducted a follow-up

survey to assess how many youth received information about HIV. While CHANGE only

collected data from 18% of youth in the network, the peer leaders that it selects successfully

reached 80% of the youth. This is comparable to previously tested algorithms HEALER

and DOSIM which gather the entire network. This result provides evidence that CHANGE

can obtain influence spread comparable to the highly sophisticated algorithms proposed by

previous work, while eliminating crucial barriers to real world deployment.

Third, we give an analysis of the real network data to explain why CHANGE can

succeed while gathering such a small portion of the network. Our explanation draws

on friendship paradox, a phenomenon observed in social networks where a typical node’s

neighbors have more ties than the node itself. We demonstrate this phenomenon occurs

across both of the networks that we gathered and show how CHANGE exploits it to produce

sampled networks which are substantially more informative for influence maximization

than a comparable number of uniformly random samples.

3.1 Related Work

Influence maximization was introduced by Kempe et al. [KKT03], and has been extensively

studied since then [CWW10, TXS14, CDPW14, GLL11a, JHC12, GLL11b, LBNZ17, MN11].

Most work has focused on algorithms which are scalable to extremely large networks, pri-
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marily in the context of online viral marketing. Recently, HIV prevention (and preventative

health more broadly) has emerged as a new application area for influence maximization

which brings its own set of research challenges. Yadav et al. [YCXJ+16] proposed HEALER,

a POMDP-based algorithm for selecting influential peer leaders. Subsequently, Wilder et al.

[WYI+17b] introduced the DOSIM algorithm which uses robust optimization to account for

uncertainty about the true probability of influence propagation. Our approach to parameter

robustness is similar to techniques in robust MDP planning [KVM+12], though the domains

are entirely different.

Yadav et al. [YWR+17] conducted a real-world pilot study of HEALER and DOSIM,

and found that both algorithms significantly outperformed the status-quo heuristic used

by agencies (selecting high-degree nodes). However, neither algorithm addresses any of

the challenges described above. Both assume that the entire social network is provided

as input, which is unrealistic in practice due to the enormous effort required. Further,

only DOSIM handles uncertainty about the probability of influence spread, and its method

for doing so is extremely computationally intensive (see Section 3.3.3). Separate work by

Wilder et al. [WIRT18] considered network data collection. They proposed the ARISEN

algorithm which samples a portion of youth in the network to collect data from. While

ARISEN can be theoretically analyzed for certain network structures, it is not practically

suitable to deployment because it relies on querying a sequence of specific youth who

may be difficult to locate (see Section 3.3.2). Moreover, ARISEN does not consider either

parameter uncertainty or execution errors (the possibility that some peer leaders will not

attend), both of which we incorporate into CHANGE.

3.2 Problem description

Motivating domain: Our work is designed to overcome the challenges in deploying in-

fluence maximization techniques to support community-driven interventions. We are

specifically motivated by the challenge of raising awareness about HIV among homeless

youth. Typically, an HIV awareness intervention will be provided by a drop in center or
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other organization which serves homeless youth. Each intervention is a day-long class

followed by weekly hour-long meetings. Hence (as is typical in many intervention domains),

the service provider will almost never have enough resources to deliver the intervention

to all of the youth that frequent the center; instead, the intervention is usually delivered

to 15-20% of the population1. Further, limitations on space and personnel mean that the

intervention can typically be delivered to only 4-6 youth at a given time, so the training

is broken up over a series of small sessions. These youth are trained as peer leaders who

communicate with other youth about HIV prevention. This amplifies the reach of the

intervention through the social network of the homeless youth. The question is which youth

will make the most effective peer leaders, able to reach the greatest number of their peers.

This is an influence maximization problem, which we now formalize.

Influence: The youth have a social network represented as a graph G = (V, E). Each

youth is initially inactive, meaning that they have not received information about HIV

prevention. Once nodes are activated by the intervention, they have a chance to influence

their peers. We model this process through a variant on the classical independent cascade

model (ICM) which has been used by previous work on HIV prevention and better reflects

realistic time dynamics [YCXJ+16, WYI+17b, YWR+17]. The process unfolds over discrete

time steps t = 1...T, where T is a time horizon. There is a propagation probability p. When

a node becomes active, it attempts to activate each of its neighbors. Each attempt succeeds

independently with probability p. Activation attempts are made at each time step until

either the neighbor is influenced or the time horizon is reached.

Note that the assumption that p is uniform across edges is without much loss. As noted

by He and Kempe [HK16], a uniform p is equivalent to each edge drawing an individual

propagation probability i.i.d. from a distribution with mean p. This is because the following

processes are analytically equivalent: (1) propagate influence with probability p and (2)

draw a propagation probability q from a distribution with E[q] = p and then propagate

1Note that while CHANGE directly surveys ∼18% of youth, they name others as friends, resulting in a
larger sampled graph.
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influence with probability q. Hence, our model subsumes any stochastic model where the

probabilities are drawn from a common prior.

Interventions: At each time step t = 1...T, the algorithm selects a seed set At containing

up to K nodes. However, each seed node may or may not actually attend the intervention.

This problem is particularly acute with homeless youth since a number of factors could

prevent a given youth from attending (e.g., being arrested, running out of money for a bus

ticket, etc.). Hence, we assume that each node v has a hidden state xv ∈ {present, absent}.
Each node’s state is drawn independently from some prior distribution D. For simplicity,

we will take D to set each node to be present with probability q. However, all of our analysis

applies to arbitrary distributions. For each v ∈ At, if xv = present, then v is activated.

Nothing occurs if xv = absent. Note that an absent node can still become activated by others,

since they may still be in contact with others in the social network. After the set At is chosen,

the intervention occurs and the hidden state of each v ∈ At is observed. We denote the set

of all observations received at time t as Ot.

The algorithm may use this information to plan the next intervention. In other words, the

problem is adaptive. To model adaptivity, we introduce the notion of a policy. A policy maps

from past actions and observations to the action that should be taken next. Let A = {S ⊆
V : |S| ≤ K} be the set of all possible actions. A history is the current sequence of actions

chosen and observations received, denoted by ψt = ((A1, O1), (A2, O2), ...(At, Ot)). Let Ψ be

the set of all possible histories. A policy is a mapping π : Ψ → A. Let A(ψt) = (A1...At)

be the sequence of actions taken and O(ψ) = (O1...Ot) be the corresponding observations

(whether each peer leader was present or absent). Recall that youth are trained in groups

of 4-6; the policy selects a group of youth to invite given who was trained previously. We

denote the objective as f (A(ψ)|O(ψ)). f is the expected number of nodes influenced by the

seed nodes in A(ψ) conditioned on the observations in O(ψ). We overload notation and

let f (π) = Eψ∼π[ f (A(ψ)|O(ψ))] be the expected reward from running policy π, where the

expectation ranges over the hidden state x (which determines π’s actions) as well as the

influence process. We seek a policy maximizing f (π).
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Figure 3.1: Illustration of the CHANGE agent.

Uncertainty about network structure and parameters: We consider extensions to the

core adaptive influence maximization problem which account for the lack of information

endemic in field deployments. First, we consider the case where the structure of the network

(the edges E) are unknown. To address this challenge, we give our agent a budget of M

queries to run before conducting the intervention. Each query may target either a uniformly

random node, or the neighbor of a node already queried. When a node is queried, it reveals

all of its edges. The goal is to use the M queries to uncover a set of edges which suffice to

identify influential nodes.

We then consider an unknown propagation probability. Here, we take a robust optimiza-

tion approach and look for a policy which performs well across a range of possible values

for p. More detail on this part of the problem can be found in Section 3.3.3.

3.3 CHANGE: a new agent for influence maximization in the field

We now introduce the CHANGE agent for end-to-end influence maximization. Figure

3.1 illustrates the three components of the agent. We start with the last component, peer

leader selection, since the other components exist to provide the data that the peer leader

selection algorithm requires. Peer leader selection is performed by an adaptive greedy
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algorithm (Algorithm 6), which handles the chance that some peer leaders may not attend

the intervention and plans solutions using the observations obtained so far. Algorithm 6

requires as input a (sample of) social network and a propagation probability p. Algorithms

7 and 8 provide these inputs.

3.3.1 Adaptive greedy planning

Algorithm 6 Adaptive greedy

1: for t = 1...T do
2: At = ∅
3: for k = 1...K do //greedily select seeds for action t
4: v = arg maxv∈V ∆(At ∪ {v}|ψt−1)− ∆(At|ψt−1)
5: At = At ∪ {v}
6: end for
7: execute At and observe Ot
8: ψt = ψt−1 + (At, Ot) //add action/observation to history
9: end for

Given as input the graph G and propagation probability p, finding the optimal policy is

a difficult planning problem. There are 2n possible hidden states and (n
K) possible actions.

While it is possible to formulate the problem as a POMDP, these exponentially large state

and action spaces place even small instances beyond the reach of off-the-self solvers. Hence,

we exploit the structure of the problem to formulate a scalable greedy algorithm which

obtains (provably) near-optimal solutions.

Pseudocode for adaptive greedy, our online planning algorithm, can be found in Al-

gorithm 6. Algorithm 6 selects the action at each step which maximizes the expected

gain in influence spread, conditioned on the observations received so far. Then, it waits

until this action has been executed, observes which peer leaders attended the intervention,

and greedily plans the next step. Formally, let ∆(At|ψt−1) = f (A(ψt−1) ∪ At|O(ψt−1))−
f (A(ψt−1)|O(ψt−1)) denote the expected marginal gain to selecting At at time t. The greedy

policy is to select At = arg max|A|≤K ∆(A|ψt−1) (the outer loop of Algorithm 6). However,

computing the maximizing action is itself computationally intractable (as there are (n
K) possi-

ble choices). Hence, Algorithm 6 uses an additional greedy inner loop which greedily selects
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the elements of At one at a time (lines 3-5). Note that ∆ can be computed by averaging over

random simulations over both the hidden state (which nodes are present/absent) as well as

how influence spreads via the ICM.

We prove the following theorem, which shows that greedy planning is sufficient to

obtain a guaranteed approximation ratio:

Theorem 9. Let πG be Algorithm 6’s greedy policy and π∗ be an optimal policy. It holds that

f (πG) ≥
( e−1

2e−1

)
f (π∗).

A proof may be found in the supplemental material. We use the adaptive submodularity

framework of Golovin and Krause, which generalizes the classical notion of a submodular

set function to adaptive policies. Their framework does not directly apply to our problem

since our algorithm selects a sequence of actions, not a set. The order in which actions

are selected matters since peer leaders who are selected earlier will have more time to

influence others. We show that our problem can be reformulated as maximizing an adaptive

submodular set function subject to a more complex set of constraints (a partition matroid).

This is the first approximation guarantee for adaptive influence maximization under execution errors,

which is a well-known challenge in domains such as ours [WYI+17b, YWR+17].

3.3.2 Network collection

Algorithm 7 Network sampling

1: input: vertex set V, budget M
2: E = ∅ //set of edges observed
3: S = ∅ //set of nodes surveyed
4: for i = 1... M

2 do
5: Sample v uniformly at random from V \ S
6: S = S ∪ {v}
7: E = E ∪ {(v, u) : u ∈ N(v)}
8: Sample u uniformly at random from N(v) \ S
9: E = E ∪ {(u, w) : w ∈ N(u)}

10: S = S ∪ {u}
11: end for
12: return E
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The adaptive greedy algorithm assumes that the graph G is fully specified. However, in

order for an intervention to deployed in practice, the social network needs to be laboriously

gathered by interviewing the entire population of homeless youth (potentially hundreds

of youth in total). This is not practical for a service provider to carry out on their own.

We present an approach (Algorithm 7) which randomly samples a small number of youth

to survey. Our procedure is easy for a service provider to implement in the field without

much computational assistance. This simplicity is enabled by underlying insights about the

structure of homeless youth social networks, which may assist with intervention design in

other vulnerable populations.

We assume that the service provider has the ability to survey up to M youth. Each

youth, when surveyed, reveals all of their edges. Algorithm 7 chooses M
2 nodes uniformly

at random from the population to survey (line 5). For each surveyed node, it choses a

uniformly random neighbor to survey as well (line 8). Lastly, it returns the graph consisting

of the reported edges. The intuition for why this procedure succeeds is that it leverages

the friendship paradox: a phenomena where a random node’s neighbor has more friends,

on average, than the node itself. Essentially, high-degree nodes are overrepresented when

we sample a random neighbor instead of a uniformly random node. Thus, Algorithm 7 is

disproportionately likely to find central nodes in the network who will reveal many edges

and may be good potential seeds. We elaborate using empirical data from our pilot studies

in Section 3.5.4.

We contrast here our sampling procedure with the previously proposed algorithm for

influence maximization with an unknown network, ARISEN [WIRT18]. ARISEN simulates

a random walk by starting at a random node, moving to a random neighbor of the first

node, then to a random neighbor of the second and so on. Its motivation is very different. It

exploits community structure, where nodes form densely connected subgraphs which are

only loosely connected to the rest of the network. ARISEN uses each walk to estimate the

size of the community that it lies in and attempts to seed large communities. By contrast,

Algorithm 7 leverages a distinct structural property (the friendship paradox). This shift is
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motivated by practicality. In the feasibility study, only 53% of contacts listed by youth could

be located at the center. Hence, it is relatively easy to find at least one contact, as prescribed

by Algorithm 7, but much harder to reach a chain of 5-10 youth as in ARISEN.

3.3.3 Parameter robustness

Algorithm 8 Robust parameter selection

1: input: parameter values p1...pL
2: for i = 1...L do
3: for j = 1...L do
4: g(pi, pj) = value obtained by Algorithm 6 using pi evaluated under pj
5: end for
6: end for
7: return arg maxi=1...L minj=1...L

g(pi ,pj)

g(pj,pj)

A further complication is that the adaptive greedy algorithm assumes that the prop-

agation probability p is known, in order to calculate the marginal gain ∆. However, p is

never known precisely in practice; each intervention takes months to deploy so we are

unlikely to observe the many repeated cascades needed to for learning-based approaches.

Previous work has attempted to resolve this dilemma via robust influence maximization

[HK16, CWW10, LVK16, WYI+17b] which finds a seed set which performs well in the worst

case over an uncertainty set of possible parameters. However, the only previous work which

addresses robust influence maximization in an adaptive domain is the DOSIM algorithm.

DOSIM requires hours or even days of runtime on a high-performance computing cluster

because it needs to brute force over a grid of possible parameter settings. Such computa-

tional expense is far beyond the capabilities of the average service provider, motivating the

development of lightweight but effective heuristics for robust influence maximization.

Algorithm 8 gives the heuristic used by CHANGE. It searches for a good nominal value

of the parameter p, which (when given to Algorithm 6) will result in high performance

no matter what the true value of p actually is. We first discretize the interval [0, 1] into L

points p1...pL. Let g(pi, pj) denote the expected influence obtained when we run adaptive

greedy planning based on propagation probability pi, but the true parameter is pj. We
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then find p∗ = arg maxi=1...L min j = 1...L g(pi ,pj)

g(pj,pj)
. Here, g(pi ,pj)

g(pj,pj)
, is the ratio of the value based

on planning with parameter pi to the value that could have been obtained if we new the

true parameter pj. p∗ is the parameter which maximizes the worst-case value of this ratio.

Notably, this requires only L2 runs of adaptive greedy; we take L = 10 in practice. By

contrast, DOSIM requires O
( n

ε

)3 runs of a greedy algorithm to achieve approximation error

ε. This quickly reaches thousands (or tens of thousands) of runs even for moderately sized

networks and requires high-performance computing resources.

We investigate the performance of this heuristic on two real homeless youth social

networks, Network A and Network B [YCXJ+16, WYI+17b]. Both were gathered from youth

at a different drop-in center and contain approximately 150 nodes. Table 3.1 shows g(pi ,pj)

g(pj,pj)
,

the percentage of optimality, for several combinations of pi and pj. For instance, the entry

for Network A in the row corresponding to 0.2 and the column corresponding to 0.01

indicates that when adaptive greedy plans on p = 0.2, but the true parameter is actually

p = 0.01, it obtains 88.7% of the optimal value possible. In both networks, Algorithm 8

selects p∗ = 0.2 as the optimal choice: it has value at least 88.7% of the optimum under all

parameter combinations in Network A and value at least 92.9% of the optimum on Network

B. While this still improves on a naive choice which ignores robustness, we observe that all

of the values in the table are relatively high. This indicates that influence maximization in

this domain may not be highly sensitive to the exact choice of parameter.

To explain this phenomenon, Figure 3.2 shows the seed set chosen for Network A under

different values of p. We observe a clear trend: with low p, the seeds are clustered more

tightly together in the core of the network, and as p grows an increasing fraction of the

seeds move to the periphery of the network. Intuitively, when p is high, a few seed nodes

suffice to influence the core of the network. Thus, the greedy algorithm extracts higher

marginal return by using seed nodes to cover outlying regions which are less likely to have

been reached from the core. p = 0.2 represents a "goldilocks" solution where the core of the

network is heavily covered without being oversaturated, and hence performs well across

many values of p. However, other parameter choices can still do well because the majority
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Table 3.1: Percentage of optimum obtained by planning based on parameter on row, when true parameter is
given by column.

Network A Network B

p 0.01 0.2 0.5 0.8 0.01 0.2 0.5 0.8

0.01 100 81.0 83.4 88.1 100 86.8 88.3 89.7
0.2 88.7 100 97.0 96.8 93.2 100 95.6 92.9
0.5 85.5 95.7 100 98.8 88.6 96.9 100 97.1
0.8 84.9 93.1 97.8 100 89.1 92.0 99.3 100

Figure 3.2: Seeds chosen under different values of p.

of the possible value is located in the core of the network, which all seed sets devote several

seeds to.

3.3.4 Simulation experiments

We now examine the performance of the CHANGE agent in a series of experiments using

real-world data collected from homeless youth populations at different drop-in centers. We

use networks collected from our own and previous pilot studies. The first network is the

one we collected from the youth enrolled for CHANGE’s intervention study. The other

two networks were gathered by Yadav et al., also from real homeless youth, for their pilot

studies of the HEALER and DOSIM algorithm. The main question is whether CHANGE is

able to find influential seed nodes while only surveying a small fraction of the network. We

ran CHANGE in simulation on each of the real-world networks, querying M = 12 nodes
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Figure 3.3: Simulated influence of CHANGE compared to adaptive greedy run on the full network. The x
axis denotes which pilot study the network is taken from.

to obtain a sampled graph. This is 15-20% of the number of nodes in each network. Then,

CHANGE selected K = 4 seed nodes in each of T = 3 rounds (reflecting the setup used in

the intervention study). We conducted 30 independent trials for each network.

Figure 3.3 compares the number of non-peer leaders reached by CHANGE compared

to the number reached by adaptive greedy (Algorithm 6) when it was given the entire

network in advance. We also tried comparing to the DOSIM agent [WYI+17b] and obtained

near-identical results. We see that CHANGE obtains 70-88% of the influence spread which

is achievable if we knew the entire network in advance (comparable to previous work on

network sampling [WIRT18]). However, CHANGE surveyed only 15-20% of the nodes in

the network. This simulation, conducted on networks gathered from real homeless youth

populations, provides evidence that CHANGE can find influential peer leaders using only a

small amount of data.

3.4 Pilot study procedure

The major contribution of this work is carrying out a pilot study which tests the CHANGE

agent in a field deployment at a real drop in center serving homeless youth in a major U.S.

city. Here, we outline the procedure followed for the pilot study. There were two studies,

the feasibility study and the intervention study. In the feasibility study, we just tested the
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Table 3.2: Number of youth recruited, trained, and retained for follow-up in each study. CHANGE refers to
the study conducted in this work to test the CHANGE agent. The other columns are taken from Yadav et al.
[YWR+17], who conducted pilot tests of HEALER and DOSIM.

CHANGE HEALER DOSIM

Youth recruited 64 62 56
Queried for links 18.75% 100% 100%
PL trained 15.6% 17.7% 17.85%
Retained 54.7% 73% 73%

first component of CHANGE (network data collection) to validate that it works in practice

to gather high-quality data. In the intervention study, we carried out actual interventions

with homeless youth at the center. This step used all three steps of the CHANGE agent: we

gathered the network, found a robust set of parameters, and then carried out interventions.

For each of the studies, we enrolled (respectively) 72 and 64 youth. Each youth was paid

$20 to enroll in the study (all monetary incentives were the same as prior studies [YWR+17]).

We ran CHANGE’s data collection mechanism, randomly sampling a subset of youth to

query for ties. Each youth who enrolled was also asked to complete a baseline survey. As

part of this survey, we also gathered the full network consisting of ties from all of the youth.

We emphasize that this data was collected just for analysis. We did not use the full network to plan

interventions, and we would not expect an agency to conduct this step in a regular deployment.

In the feasibility study, we also gathered edges via field observations and interviews with

agency staff in order to validate our data collection via comparison to alternate mechanisms

(see Section 3.5.1).

In the intervention study, social workers delivered the Have You Heard intervention,

previously published in the public health literature [RTC+12]. The social workers conducted

a day-long class with the selected youth, covering HIV awareness and prevention, and

training the youth as peer leaders to communicate with others at the agency. Peer leaders

were paid $60. Three sets of peer leaders were selected by CHANGE, with approximately 4

peer leaders in each set. This matches the number used in previous influence maximization

pilot studies [YWR+17]. Table 3.2 reports specific values on the number of youth enrolled,
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queried for edges, and trained as peer leaders for our pilot test as well as pilot tests of

previous algorithms. One month after the start of the study, we conducted a follow up

survey with all of the youth who initially enrolled. Some youth were lost to follow up (see

Table 3.2). We asked the youth whether they had received information about HIV prevention

from a peer who was part of the study. Youth were paid $20 to respond to the follow up

survey. We emphasize that all aspects of the intervention study (the training materials for

peer leaders, survey instruments, etc.) are identical to Yadav et al. [YWR+17], so our results

are directly comparable.

3.5 Pilot study results

3.5.1 Feasibility study

We address two questions in the feasibility study. First, can Algorithm 7 (CHANGE’s

network sampling) be implemented with homeless youth? Second, is the resulting self-

reported data accurate enough for influence maximization?

The challenge in the first question is that homeless youth can be difficult to locate.

However, we were able to locate at least one neighbor for at least 80% of youth queried

who were not isolates (i.e., named at least one neighbor). We conclude that Algorithm 7 is

feasible for homeless youth populations. When no neighbor could be located, we drew a

new random youth.

We now turn to the second question, which is of broader interest. Previous work on

influence maximization in the field uses primarily self-reported network data [YCXJ+16,

WYI+17b, YWR+17]. Note that gathering ties from social media has proven unreliable

for homeless youth populations both due to limited access to social media websites and

mismatch between social media ties and true relationships. More broadly, self-reported

network data is the best available to researchers in many field settings [Bre00]. However,

self reported ties are subject to their own limitations (forgetfulness, reticence, etc. [Bre00]).

To our knowledge, no previous work has validated whether self-reported ties suffice for influence
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Table 3.3: Number of edges gathered by each method and the percentage overlap with edges gathered via
self-report.

Self-report Observed Staff All

Number edges 51 23 46 112
Overlap with self-reports 100% 8.7% 13% 40%

maximization. Our results show that self-reported data has important limitations (many

edges discovered by other means were not self-reported), consistent with a large literature

on network data collection methods [Bre00]. However, self-reported data sufficed to find

near-optimal seed sets despite these limitations.

We gathered data via several methods: traditional self-reporting, field observations by

the research staff, and interviews with staff members at the agency. This yielded three

distinct sets of edges. Figure 3.4 shows the three networks, along with the composite graph

obtained by combining edges from all three data sources. We see that self-reports give a

fairly accurate global picture of the network. However, the other two data sources fill in

many specific edges omitted in the self-reported data. Table 3.3 gives the number of edges

gathered by each method, and the percentage of those edges which were contained in the

self-reported data. We see that a high level of disagreement between the data collection

methods on the status of individual edges: only 8.7% of ties from field observations and

13% of ties reported by staff members were reported by the youth themselves. In total, field

observations and staff reports uncovered 69 edges, compared to 51 reported by the youth

(with little overlap between the two). This is consistent with prior knowledge: a review

of research on network data collection shows that anywhere from 10-80% of edges may

be forgotten in self-reported data [Bre00]. Another study comparing self-reported ties to

observed interactions found that the two data sources were moderately correlated (median

r = 0.51), but far from identical [GFCX03].

While many ties may be absent in self-reported data, our ultimate objective is to find

influential nodes (not reconstruct the network for its own sake). Hence, we now assess the

robustness of influence maximization to missing edges. Given the propensity for forgetting
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Figure 3.4: Left: Networks gathered using different methods. (a) All methods combined. (b) Self reported ties.
(c) Field observations. (d) Staff observations. Right: Fraction of optimal value obtained using self-reported data
as additional edges are added. Error bars show one standard deviation.

in self-reported data, we conclude that all edges which are self-reported do exist [Bre00],

but many existing edges are not self-reported. Nevertheless, it is unlikely that all of the

edges observed by field researchers or staff truly exist since reports by outside observers are

typically less reliable than self-reports [GFCX03]. Thus, we conduct a simulation experiment

in which a randomly selected portion of the non self-reported edges are added to the graph.

Figure 3.4 shows the performance of the greedy algorithm as the number of edges added

increases. Each point on the x axis represents a fraction of edges which were observed by

either field researchers or staff, but not reported by the youth themselves, to add to the

graph. E.g., the point 0.25 indicates that a random set comprising 25% of edges which were

not self reported are added to the self reported edges to obtain the final graph. Each point

averages over 30 draws for this random set. The y axis shows the fraction of optimality

obtained by running the adaptive greedy algorithm on just the self reported network. We

approximate the optimum by running adaptive greedy on the full network, representing

the best possible under full information. The values are consistently high, with very low

standard deviation. Even when all of the unreported edges are added, so adaptive greedy

does not know about the majority of edges in the graph, it still obtains at least 87% of the

optimal value. In reality, not all of the unreported edges are real links, so we would expect

even better performance in practice. We conclude that even though self-reported data may

miss some edges, it still suffices to identify the influential nodes.
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3.5.2 Intervention study

We now turn to our second pilot study, which tested the entirety of the CHANGE agent. In

this study, we recruited a separate population of 64 homeless youth from a drop-in center.

Table 3.2 gives the total number of youth recruited for different activities, as well as the

corresponding figures for previous pilot tests of the HEALER and DOSIM algorithms by

Yadav et al. [YWR+17]. We gathered the full social network from all 64 youth, and in

parallel ran Algorithm 7 with a budget of M = 12 youth to collect a sampled network

(querying 18.75% of youth in total for links). Only the sampled network was used to plan

interventions; the full network was gathered only for analysis. We then ran the CHANGE policy

for three steps, training 10 total peer leaders (15.6% of the network). This percentage

is comparable to previous studies (HEALER and DOSIM trained approximately 17% of

the network each). However, HEALER and DOSIM used the entire network to plan their

intervention, compared to the 18.75% of sampled youth used by CHANGE. At one month,

we conducted a follow-up survey to assess whether youth received information about HIV

prevention from the peer leaders. 54.7% of youth were retained in the follow-up survey,

which is a somewhat lower percentage than in previous studies. Nevertheless, we obtain a

population of 34 youth who provided follow-up data.

3.5.3 Influence spread results

We now present our core result: the number of youth who received a message about HIV

prevention. We examine the percentage of youth in the follow-up group who were not

peer leaders (and hence eligible to become influenced) who reported receiving informa-

tion. Figure 3.5 shows this percentage for our pilot study of CHANGE as well as the

percentages reported by Yadav et al. [YWR+17] in their pilot studies of the state of the art

algorithms HEALER and DOSIM. CHANGE reached 80% of non-peer leaders compared

to approximately 70% for each of HEALER and DOSIM. Thus, CHANGE was able to reach

just as many youth while gathering data from only 18.75% of the network. The 10% difference

between CHANGE and HEALER/DOSIM could be attributable to random variation; we do
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Figure 3.5: Percentage of youth who were not peer leaders reached by each algorithm in its respective real-world
pilot test.

not claim that CHANGE is actually more effective than algorithms which gather the entire

network. Nevertheless, this result provides empirical evidence that CHANGE can perform

comparably to existing state of the art influence maximization agents while drastically

reducing the amount of data required.

We now take steps to ensure that our results are not an artifact of a difference between

the structures of the different networks from each pilot test or of random variation. First,

we recall our simulation results in Figure 3.3, which indicate that CHANGE performs

competitively with algorithms which are given the entire graph on three different real-world

networks. Second, Table 3.4 shows a range of statistics for each network. CHANGE’s

networks is fairly similar to that of HEALER and DOSIM. However, it is somewhat sparser:

its density (the fraction of possible edges which are present) is 0.043 compared to 0.079

for HEALER and 0.059 for DOSIM. This translates into somewhat longer average path

lengths and larger diameter. However, sparser structure should only work against CHANGE

since there are fewer edges along which influence can propagate. Hence, it is unlikely that

CHANGE’s strong performance is attributable to anomalous network structure.

3.5.4 Explaining CHANGE’s success

In this section we attempt to explain why CHANGE can find seed sets which have near-

optimal influence spread by surveying only a small fraction of youth. The intuitive explana-
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Table 3.4: Aggregate network statistics for the complete network in each algorithm’s pilot study. "Diameter"
is the diameter of the largest connected component.

CHANGE HEALER DOSIM

Diameter 12 8 8
Density 0.043 0.079 0.059
Avg. path length 4.88 3.38 3.15
Avg. clustering coeff. 0.221 0.397 0.195
Modularity 0.654 0.568 0.568

tion for this is a property that many social networks are known to possess: the friendship

paradox [Fel91, UKBM11, HKL13]. Specifically, a randomly chosen neighbor of a given node

is likely to have higher degree than the node itself. Our algorithm leverages the friendship

paradox by surveying both a random node and a randomly chosen friend of that node.

Figure 3.6 plots two quantities for the networks collected in the feasibility and inter-

vention studies. First, the degree distribution. Second, the distribution of the degree of a

randomly chosen neighbor of a randomly chosen node. This is the degree distribution of

the nodes that Algorithm 7 samples in its second step. We see that the neighbor degree

distribution is skewed towards higher degrees. In the feasibility network, the mean degree

is 3.11 while the mean friend’s degree is 4.56. In the intervention network, the mean degree

is 2.98 while the mean friend’s degree is 4.04. This suggests that by querying a random

neighbor of each node, our algorithm is able to preferentially locate nodes who are useful

in two ways. First, high degree nodes provide more information about the network. Second,

they are more likely to be influential peer leaders and may serve as a useful set of candidates

which adaptive greedy can refine.

3.6 Discussion and conclusion

This chapter presents the CHANGE agent for influence maximization, a multiagent problem

with many applications in preventative health and other domains. CHANGE addresses

major barriers to the deployment of influence maximization by service providers through a
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Figure 3.6: Degree distributions. Top row: feasibility study. Bottom: intervention study. Left: standard
degree distribution. Right: degree of a random neighbor.

series of algorithmic contributions, backed by simulation results on real-world networks. We

then conducted a real-world pilot study of CHANGE with a drop-in center serving homeless

youth, the first such pilot study of sampling-based influence maximization and only the

second study testing any influence maximization agent in the real world. CHANGE obtained

comparable influence spread to previously field tested algorithms, but surveyed only 18%

of youth to obtain network data. CHANGE has empirical promise in delivering high-quality

influence maximization solutions in a manner which can be feasibly implemented by a

service provider.

While the algorithms underlying CHANGE are easy to implement, they draw on a series

of insights into the social behavior of homeless youth. One lesson learned is that, to be

successful in the field, algorithms must be designed with their target population and setting

in mind. CHANGE both navigates challenges specific to homeless youth (e.g., the difficulty

of locating youth to query for edges or serve as peer leaders) and leverages properties of

their social network (the friendship paradox). Our experience shows that accounting for

both challenges and opportunities in the target population is crucial to produce a practically
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deployable algorithm.
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Chapter 4

Field trial of an AI-augmented

intervention for HIV prevention

among youth experiencing

homelessness

Each year, approximately 4.2 million youth in the United States experience some form of

homelessness [MDM+18]. One of the key health challenges for this population is high HIV

prevalence, with reported prevalence in the range of 2-11% [YR11], up to 10 times that for

youth with stable housing [Nat12].

One proposed mechanism for fostering behavior change in high-risk populations is

the peer change agent model. The main idea is to recruit peer leaders from the population

of youth experiencing homelessness (YEH) to serve as advocates for HIV awareness and

prevention. Use of peer leaders has been suggested in the public health and social science

literature due to the central role that peers play in risk behaviors for YEH, including related

to HIV spread [GJdlHTG13, RMBAY10, RBAMM12]. Indeed, peer change agent models

have succeeded in past HIV prevention interventions in other contexts [MKOS09]. However,

there have also been notable failures [G+10], and it has been argued such failures may be
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attributable to how peer leaders are selected [SZL15]. The long-standing and most widely

adopted method in the public health literature for selecting peer leaders is to identify the

most popular individuals in the social network of the youth [KMS+97] (formally, the highest

degree nodes). This poses the question: are high-degree youth the best peer leaders to

disseminate messages about HIV prevention? This question has relevance far beyond HIV

prevention; analogous social network interventions are used widely across development,

medicine, education, etc. [KHS+15, PSA16, BCDJ13, VP07].

Information dissemination on social networks is the focus of a long line of research

in computer science. In particular, the influence maximization problem, formalized by

[KKT03], asks how a limited number of seed nodes can be selected from a social network to

maximize information diffusion. Influence maximization has been the subject of extensive

work by the theoretical computer science and artificial intelligence communities [CWY09,

CWW10, GLL11a, BBCL14, TXS14]. However, to our knowledge, no work prior to this

project had connected the computational literature on influence maximization to the use

of network-driven interventions in public health and related fields. Computational work

has mainly focused on developing highly efficient algorithms for use on large-scale social

media networks (often motivated by advertising), while interventionists in health domains

have not used explicitly algorithmic approaches to optimize the selection of peer leaders.

Previous computational work assumed access to data (e.g., the full network structure and a

model of information spread) which are simply not available in a public health context.

This chapter reports the results of a project which bridges the gap between computation

and health interventions. As a research team composed of computer scientists and social

workers, we developed, implemented, and evaluated an intervention for HIV prevention in

YEH where the peer leaders are algorithmically selected. This intervention was developed

over the course of several years, alternating between algorithm design and smaller-scale pilot

tests to evaluate feasibility. The final system, which we refer to as CHANGE (CompreHensive

Adaptive Network samplinG for social influencE), was evaluated in a large-scale field trial

enrolling 713 youth across two years and three sites. The trial compared interventions
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planned with CHANGE to those using the standard public health methodology of selecting

the youth with highest degree centrality (DC), as well as an observation-only control group

(OBS). Results from this field trial demonstrate that CHANGE was substantially more effective than

the standard DC method at increasing adoption of behaviors protective against HIV spread. To our

knowledge, this is the first empirically validated success of using AI methods to improve

social network interventions for health. It is critically important for “AI for Social Good"

work to result in deployed and rigorously evaluated interventions, and this chapter provides

one such example.

The remainder of the chapter is organized as follows. First, we survey related work from

both a computational and application perspective. Second, we introduce a formalization of

the problem of selecting peer leaders from a computational perspective. Third, we briefly

review the design of the CHANGE system to address this problem (deferring most details to

earlier technical publications [WOVH+18, Wil18a, WIRT18]). Fourth, we present the design

of the field trial. Fifth, we present and analyze results from the trial. Sixth, we discuss

lessons learned over the course of the project which may help inform future attempts to

design and implement AI-augmented public health interventions.

4.1 Related Work

A great deal of research in computer science has been devoted to the influence maximization

problem. The majority of this has focused on computationally efficient algorithms for large

networks [CWY09, CWW10, GLL11a, BBCL14, TXS14] and assumes that the underlying

social network and model of information diffusion are perfectly known. There is also

more recent literature on algorithms to learn or explore these properties. Predominantly

though, such work requires many repeated interactions with the system. For example,

algorithms to estimate the parameters of an unknown model of information diffusion

[DLBS14, PAH15, NPS15, HXKL16, KSSW18] typically require the observation of hundreds

of cascades on the same network. Collecting this amount of data is intractable for public

health interventions, where a single round of the intervention takes months. Other work
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concerns the bandit setting, where the algorithm can repeatedly select sets of nodes and

observe the resulting cascade [WKVV17, CWY13, WC17]. Similarly, these algorithms accept

poor performance in early rounds as the price for improvement over the long run, but

waiting tens or hundreds of rounds for improved performance is not an option in our

domain. Such techniques are a much better fit for problems concerning online social

networks (for example, in advertising domains) where repeated experiments and large

datasets are possible.

The most closely related related computational work to ours concerns a robust version of

the influence maximization problem [HK18, CLT+16, LVK16], building on the earlier work

of [KMGG08] on general robust submodular maximization problems. Our algorithm for

robust submodular optimization, for which an overview is provided below, differs from

these approaches mainly in that it solves a fractional relaxation of the problem instead of

repeatedly calling a greedy algorithm for discrete submodular optimization, which helps

improve computational performance.

There is a large literature on social network interventions in public health [VP07,

KHS+15], clinical medicine [YHWH03], international development [CDJS15, BCDJ13], edu-

cation [PSA16], etc. Common strategies involve selecting high degree nodes (as compared

to in our trial), selecting nodes at random, or asking members of the population to nominate

others as influencers. The empirical evidence for the relative effectiveness of different

strategies is mixed; [KHS+15] reports no or marginal improvement for nominations vs

random selections (depending on the outcome measure), while [BCDJ19] report statistically

significant improvements for a nomination-based selection mechanism. [CEU18] introduce

improved statistical methods to compare the effectiveness of seeding strategies and con-

clude that nomination-based strategies do not measurably improve performance. Indeed,

[AMS18] show that in some theoretical network models it may be preferable to recruit a

slightly larger number of influencers at random rather than carefully map the network.

We contribute to this literature by developing and empirically evaluating an algorithmic

framework which combines both features reminiscent of the nomination-based strategies

90



proposed by others (for gathering information about network structure) as well as robust

optimization techniques for jointly optimizing the entire set of influencers who are selected

(not part of previous empirically evaluated strategies).

4.2 Problem Description

The population of youth are the nodes of a graph G = (V, E). We seek to recruit a set

of youth S to be peer leaders, where |S| ≤ k. In domain terms, this budget constraint

reflects the fact that peer leaders are given a resource-intensive training and support

process. The objective is to maximize the total expected number of youth who receive

information about HIV prevention, given by the function f (S). Here, f encapsulates the

dynamics of a probabilistic model of information diffusion across the network (discussed

below). The optimization problem max|S|≤k f (S) is the subject of the well-known influence

maximization problem. When the objective function f is instantiated using common models

for information diffusion, the resulting optimization problem is submodular (i.e., there are

diminishing returns to selecting additional peer leaders). While finding an optimal solution

is NP-hard, a simple greedy algorithm obtains a (1− 1/e)-approximation [KKT03].

The most common choice for the model of information diffusion is the independent

cascade model. In this model, each node who receives information transmits it to each of

their neighbors with probability p. All such events are independent. The process proceeds

in discrete time steps where each newly informed node attempts to inform each of their

neighbors, and concludes when there are no new activations. f (S) calculates the number of

nodes who receive information when the nodes S are informed at the start of the process, in

expectation over the random propagation.

The standard influence maximization problem concludes here. However, while de-

veloping an algorithmic framework applicable to public health contexts, we came across

challenges which must be solved before, during, and after the setting imagined in standard

influence maximization. These challenges opened up new algorithmic questions, addressed

in a series of publications in the AI literature [WOVH+18, Wil18a, WIRT18]. Here, we detail
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three steps for deploying an influence maximization intervention in the field.

First, information about the network structure G must be gathered. Previous work on

influence maximization assumed that the network structure is known in advance. While this

assumption may be reasonable for online social networks, we aim to disseminate information

through the network consisting of real-world interactions between youth at a given center.

Moreover, pilot studies revealed that information from an online social network (Facebook)

was a poor proxy for actual connections at the center – not all youth used Facebook, and

of those who did, many were not friends with their actual contacts at the drop-in center.

Instead, network information must be gathered through in-person interviews where social

workers ask youth to list those who they regularly interact with. Collecting data in this

manner is time-consuming and expensive, often requiring a week or more of effort on the

part of the social work team. Accordingly, the first stage of our algorithmic problem is to

decide which nodes to query for network information. The algorithm is allowed to make M

queries, where each query reveals the edges associated with the selected node. The queries

can be adaptive, i.e., the choice of the ith node to be queried can depend on the answers

given by nodes 1...i− 1.

Second, this network information is used to select an initial set of peer leaders. This

stage more closely resembles the standard influence maximization problem. However, there

is an additional complication that the propagation probability p is not known. Indeed, there

is no data source from which it could be inferred (as opposed to online platforms with

abundant data; see related work). Instead, we formulate an uncertainty set U containing a

set of possible values for p which are consistent with prior knowledge (in CHANGE, we

took U to be a discretization of the interval [0,1], reflecting limited prior knowledge). The

aim is to find a set S which performs near-optimally for every scenario contained in U .

Formally, this corresponds to the robust optimization problem

max
|S|≤k

min
p∈U

f (S, p)
OPT(p)

where OPT(p) denotes max|S|≤k f (S, p), i.e., the best achievable objective value if the prop-

92



agation probability p were known. Normalizing by OPT(p) encourages the algorithm to

find a set S which simultaneously well-approximates the optimal value for each p ∈ U and

avoids the trivial solution where solution to the inner min problem is always the smallest

possible value of p. Note that since OPT(p) is constant with respect to S, f (S,p)
OPT(p) remains

submodular with respect to S. Robust optimization of submodular functions is substantially

more difficult than optimization of a single submodular function; in fact, it is provably

inapproximable in general [KMGG08] and the aim is instead to approximate a tractable

relaxation of the problem.

Third, after an initial set of peer leaders S is identified, recruitment proceeds in an

adaptive manner. Not all youth invited to become peer leaders will actually attend the

training session. A number of potential barriers exist, e.g., a given youth could have been

arrested or not have had enough money for a bus ticket. Formally, we model that each youth

who is invited will actually attend with probability q (based on experience in pilot studies,

we took q = 0.5), where the attendance of each youth is independent of the others. For a

given value of p, the resulting objective function is f (S, p, q), which takes an expectation

over both the randomness in which nodes are successfully influenced at the start of the

process and in the subsequent diffusion. It is easy to show [WOVH+18] that f remains

submodular with this additional randomness. Because of this variation in attendance, as

well as capacity limits for the initial training, peer leaders are recruited over multiple rounds,

where the peer leaders selected in round t can depend on those who were successfully

recruited in rounds 1...t− 1. In each round t, we select a set of peer leaders St with |St| ≤ kt

and observe which nodes are successfully recruited as peer leaders. The process continues

for T rounds in total.

4.3 System Design

Our final proposed system for intervention planning is called CHANGE. CHANGE was

originally introduced in [WOVH+18]. The final version of CHANGE summarized here

is nearly the same as the original, with the exception of the algorithm used for robust
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optimization, which was separately developed and published in [Wil18a]. We now provide

an overview of CHANGE, mirroring the steps of the earlier problem formulation.

Network sampling

CHANGE uses a simple but well-motivated heuristic to select a subset of nodes to be

queried for network information (in the discussion section, we briefly review our earlier

work on a more theoretically sophisticated solution, and the rationale for choosing a simpler

method). The chosen method splits the query budget M into two halves. Each query in the

first half is made to a node selected uniformly at random from the network. Each query in

the second half follows a query in the first half, and selects a uniformly random neighbor

of the first node. This design is motivated by the friendship paradox, the observation that

high-degree nodes are overrepresented when we sample random neighbors [Fel91]. Hence,

the two stages of the query process balance between competing objectives: the first step

encourages diversity, since random sampling ensures that we cover many different parts of

the network, while the second step tends towards high-degree nodes who can reveal a great

deal of network information.

Robust optimization

We now provide an overview of how CHANGE handles parameter uncertainty within

a single stage of the planning process, before considering the multi-stage problem (with

uncertain attendance) below. As mentioned above, max-min submodular optimization is

NP-hard to approximate (within any nonzero factor) [KMGG08]. Accordingly, we need to

somehow relax the problem to obtain meaningful guarantees. Let I denote the set of all

feasible solutions (sets S where |S| ≤ k) and ∆(I) be the set of all distributions over I (i.e.,

the |I|-dimensional simplex). We developed an algorithm for the problem

max
D∈∆(I)

min
p∈U

E
S∼D

[
f (S, p)

OPT(p)

]
(4.1)
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which allows the algorithm to select a distribution over feasible sets and evaluates the worst

case only in expectation over this distribution. In game theoretic terms, this allows the

algorithm to select a mixed strategy instead of a pure strategy. At run-time, we sample

from D; the resulting set has guaranteed performance in expectation over the sampling,

but strong guarantees cannot be obtained ex-post for the sampled set (as a result of the

computational hardness of the original max-min problem). However, in practice we find

that sampling several random sets and selecting the best one gives excellent empirical

performance (i.e., closely matching or exceeding the expected value of the distribution).

Our algorithm for this problem, detailed in [Wil18a], uses a compact representation

of the space of distributions (keeping track of only the marginal probability that each

node is selected instead of each of the exponentially many potential subsets). It solves a

fractional relaxation of the discrete max-min problem using this compact representation via

a stochastic first-order method which is adapted to the particular properties of the objective.

Then, we can use known rounding algorithms for submodular maximization to sample

random sets from the distribution encoded by the solution to the fractional relaxation. This

procedure guarantees a (1− 1/e)2-approximation for Problem 4.1, which can be improved

to (1− 1/e) with some additional steps (which we did not find empirically necessary).

Multi-stage intervention with attendance uncertainty

We handle the multi-stage nature of the intervention by running the robust optimization
problem at each stage, calculating the objective function in expectation over which peer
leaders will attend and conditioning on the selection of those who have attended previous
interventions. Formally, this means that at stage t > 1, we solve

max
D∈∆(I)

min
p∈U

E
St∼D

[
f (St ∪ S1 ∪ ...∪ St−1, p, q)

max|S∗ |≤k f (S∗ ∪ S1 ∪ ...∪ St−1, p, q)

]

where S1...St−1 denote the sets of peer leaders who were succsesfully recruited in each

previous stage. It is easy to show that the inner objective f remains submodular in St (see

[WOVH+18]), and so we retain the earlier guarantees on the quality of the solution obtained

at each individual step. Moreoever, in [WOVH+18] we show that the multi-stage problem as

95



3-Month Follow-Up 
Retention

(Total n = 418, 59%)

Recruitment & 
Baseline 
Survey

(Total N = 713)

CHANGE (AI)
Degree 

Centrality 
(DC)

Observation 
Only (OBS)

1-Month Follow-Up 
Retention

(Total n = 473, 66%)

n = 253 n = 209 n = 251
Peer Change 

Agents (PCAs)
Selection & 

Training

PCAs
trained
(n = 42)

PCAs
trained
(n = 33)

n = 171 
(68%)

n = 126 
(60%)

n = 176 
(70%)

n = 154 
(61%)

n = 112 
(54%)

n = 152 
(61%)

Figure 4.1: Number of participants recruited and retained in each arm of the study.

a whole enjoys the property of adaptive submodularity, meaning that for any fixed parameter

value p, solving

max
D∈∆(I)

E
St∼D

[
f (St ∪ S1 ∪ ...∪ St−1, p, q)

max|S∗|≤k f (S∗ ∪ S1 ∪ ...∪ St−1, p, q)

]

at each step t and selecting the resulting set St enjoys an approximation guarantee relative

to the optimal adaptive policy for selecting a sequence of sets S1...St (again, with respect to a

fixed p). More detailed discussion of the theoretical properties can be found in [WOVH+18].

4.4 Study Design

We now move to the empirical portion of the project and provide an overview of the design

of the field trial. All study procedures were approved by our institution’s Institutional

Review Board. The study was designed to compare the efficacy of two different means

of selecting peer leaders: the CHANGE system described above and the standard DC

approach in public health (selecting the highest-degree youth). We additionally included an

observation-only control group (OBS), for three arms in total. The study was conducted at

three drop-in centers for YEH in a large US city. Drop-in centers provide basic services to
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YEH (e.g., food, clothing, case management, mobile HIV testing). Due to high transience in

the YEH population, most clients at a given center leave within approximately six months.

Accordingly, we tested each of the three methods at each of the the three drop-in centers

(giving nine deployments in total, each with a unique set of youth), ensuring that successive

deployments at a given drop-in center were separated by six months. Youth were only

allowed to enroll in the study once, so even the small number of youth who were present at

the center across multiple deployments were included only on the first time they attempted

to enroll. Testing each method at each drop-in center helps account for differences in the

demographic and other characteristics of youth who tend to access services at each center.

Each of the nine deployments used the following procedure. Figure 4.1 shows the

number of youth recruited and retained for each phase of the study in each arm.

First, youth were recruited at the drop-in center over the course of a week to participate

in the study. All participants gave informed consent. Each participant completed a baseline

survey which assessed demographic characteristics, sexual behaviors, and HIV knowledge.

Demographic characteristics included age, birth sex, gender identity, race/ethnicity, and

sexual orientation. Youth were also surveyed about their living situation and relationship

status.

Second, peer leaders were selected and trained (for the CHANGE and DC arms of the

study). Each individual training consisted of approximately 4 youth and there were 3-4

trainings per deployment (depending on exact attendance). In total, approximately 15% of

survey participants in each deployment were trained as peer leaders. In the CHANGE arm

of the study, network information was queried from approximately 20% of the participants

(sampled according to the mechanism described above). In the DC arm, we used a full

survey of the network to find high-degree nodes, in order to give the strongest possible

implementation to compare to.

Third, peer leaders had three months to disseminate HIV prevention messages. Peer

leaders were supported via 7 weeks of 30-minute check-in sessions with study researchers,

which focused on positive reinforcement of their successes as well as problem-solving
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strategies and goals for the future. All peer leaders attended at least one check-in session,

with modal attendance at five sessions. Peer leaders received $60 in compensation for

attending the initial training and $20 for each check-in session.

Fourth, follow-up surveys were administered to the original study participants from

the first step. Follow-up surveys assessed the same characteristics as the baseline survey.

Differences in reported sexual behavior between baseline and follow-up were used as the

primary metrics to evaluate the interventions. All such metrics were self-reported; we

followed best practices in social science research to minimize bias in self-reported data

(surveys were self-administered on a tablet and participants were guaranteed anonymity,

each of which aim to reduce social desirability bias in reporting sensitive information).

Additionally, any bias would be expected to influence each arm of the study equally,

including the observation-only control group.

The training component of the peer change agent intervention was delivered by two or

three facilitators from the social work research team. The training lasted approximately 4

hours (one half-day). Training was interactive and broken into six 45-minute modules on

the mission of peer leaders (sexual health, HIV prevention, communication skills, leadership

skills, and self-care). Peer leaders were asked to promote regular HIV testing and condom

use through communication with their social ties at the drop-in center.

4.5 Study Results

We now present the results of the field trial, starting with an overview of the outcome

variables and methodology for statistical analysis, and then giving the main results.

4.5.1 Outcome Variables

We compare two outcome variables across arms of the study. First, condomless anal sex

(CAS), assessed via a survey question asking whether youth had anal sex without a condom

at least once in the previous month. Second, condomless vaginal sex (CVS), assessed

via a survey question asking whether youth had vaginal sex without a condom at least
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once in the previous month. CAS and CVS are both important behavioral risk factors for

HIV transmission and so provide a direct assessment of the success of the intervention at

producing a material health impact.

4.5.2 Statistical Methodology

We provide both the average value of each outcome variable at each time point for the three

arms of the study as well as a statistical analysis. The statistical analysis used a mixed

effects model [GH06, WWG14] (also referred to as a multi-level model). Mixed effects

models are an extension of generalized linear models often used to analyze clustered or

longitudinal data. We specified a linear model for each outcome variable which included

terms for both the improvement caused by participating in a given arm of the study (our

estimand of interest) as well as terms for a range of control variables which account for

differences in demographics and the baseline rate of risk behaviors in each arm of the study.

The demographic control variables were age, birth sex, transgender identity, LGBQ identity,

the combination of male sex and LGBQ identity, race, committed relationship, housing

status, and drop-in center. We also included a “time" variable to account for changes in

the entire population over time regardless of participation in a particular arm of the study.

This combination of control variables helps separate the impact of the intervention from

pre-existing differences between arms of the study and intervention-independent trends.

Since the outcome of interest is binary, we used a logistic link function in the model.

We also incorporate random effects in the model to account for potential correlations

between data points. Specifically, we expect there to be correlations between responses from

the same participant and between responses from participants in the same intervention

group. Failing to correct for these dependencies would result in erroneously precise

estimates, effectively overestimating the true sample size. Mixed effects models extend the

standard generalized linear model to incorporate a random error term which is shared across

a subset of observations, creating a correlation between the responses [GH06, WWG14].

We incorporate one such random effect for each participant and one for each intervention
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group, modeling the nested dependence structure of the data. Let xi denote the covariates

for individual i, aCHANGE,i be an indicator variable for the assignment of individual i to the

CHANGE arm, ·aDC,i be an indicator variable for the assignment of individual i to the DC

arm, c(i) denote the intervention group of individual i, pi be an indicator variable for the

selection of individual i as a peer leader, and β be the model parameters. The end model is

of the following form:

logit(yit) = βcovxi + βCHANGE · t · aCHANGE,i + βDC · t · aDC,i + βPL · t · pi + εi + εc(i) + εit.

In this model, log-odds of the outcome yit are influenced by several sets of contributions.

First, there is a contribution from the individual-level covariates, estimated as βcov. Second,

there is a contribution from assignment to a treatment arm, estimated as βCHANGE and

βDC respectively. These terms are incorporated in the model as interactions between the

treatment assignment and time, modeling improvement over time in individuals assigned

to a given arm. Third, we control for improvement in individuals selected as peer leaders

(regardless of which arm of the intervention they are in) via the inclusion of a time-peer

leader interaction with coefficient βPL. This helps us isolate improvement in the directly

treated peer leaders from spillover into the group as a whole. Finally, we include the random

effects εi and εc(i), which respectively capture correlations in multiple responses from the

same individual and in responses from individuals in the same group. εit is an independent

random term for each response. We also tested a Mundlak-Chamberlain style specification

which guards against violations of the assumptions of random effects models by allowing

the εc(i) to be correlated with the group means of the covariates [Mun78, Cha82]. This model

resulted in essentially identical estimates.

We employ a Bayesian analysis with inference performed using rstan [Sta21, Sta20], in

which we obtain a posterior distribution over the model parameters of interest (using the

default weakly informative priors provided by rstan). This analysis allows us to better

capture uncertainty in the estimates. One particular concern with frequentist approaches

for our data is that calculation of standard errors and p-values is difficult when the number
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of clusters is small (9 in total), making asymptotic approximations unreliable. The Bayesian

approach allows us to sample from the true posterior (using Markov chain Monte Carlo)

without using such approximations.

We present the results in terms of 90% and 95% credible intervals over the estimated

model parameters. For the treatment effects associated with CHANGE and DC, we also

show the posterior over the relative risk, which averages out over the distribution of

other covariates in the study population to obtain the average risk of a given outcome in

participants in the treatment arm in question compared to the control group. E.g., a relative

risk of 80% indicates that, on average, a participant in the given treatment arm has 80% of

the probability of a given behavior compared to a participant in the control group, all other

features held equal.

Results are known only for youth who completed the follow-up surveys, leading to

missing data due to participant attrition (as is expected for a study enrolling YEH). Of

the 713 participants who completed the baseline survey, 245 (34%) missed the 1-month

follow-up, 300 (42%) missed the 3-month follow-up, and 180 (25%) missed both follow-

ups. However, missingness had no statistically significant association with CAS or CVS,

indicating that youth were not significantly over or under represented in the follow-up data

based on their baseline level of risk behavior.

4.5.3 Results

We now present the main results of the statistical analysis, shown in Figure 4.2. As shown

in the figures, for both outcomes there is little evidence of a baseline difference between the

arms or of an intervention-independent improvement over time (i.e., the credible intervals

for all such estimated parameters include 0).

We find that CAS reduced in the CHANGE group over time, with a posterior median

relative risk of 0.58 (95% CrI: 0.35-0.93). The relative risk of 0.58 indicates that, in the

model estimates, a youth who is enrolled in the CHANGE arm of the study has 42% lower

probability to engage in CAS than if they were enrolled in the observation-only group. That
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Figure 4.2: Posterior estimates for the CAS (top) and CVS (bottom) outcomes. Left: credible intervals for
estimated coefficients in the linear mixed effects model. Thick lines denote 90% credible intervals, thin lines
denote 95% credible intervals, and circles denote the posterior median. Right: posterior distribution of the
relative risk post-intervention for each treatment arm. Shaded regions denote the 90% and 95% credible
intervals, with the dashed line giving the posterior median. In the left-hand figure, the “baseline" category
measures pre-existing differences between the groups (relative to the observation-only group) on enrollment in
the study. The “Group x Time" category measures the estimated per-unit-time impact of participating in each
arm of the intervention (relative to the observation-only group, and after controlling for both demographics and
baseline behaviors). “PL x Time" refers to improvement over time in youth selected to be peer leaders across
either arm of the intervention. “Time" gives the estimated contribution of a trend over time independent of
which arm of the study a participant was enrolled in.

102



0 1 3
Time (months)

10

30

50

C
A

S
(%

) AI

DC

OBS

0 1 3
Time (months)

10

30

50

C
V

S
(%

) AI

DC

OBS

Figure 4.3: Average value of each outcome variable at each point in time for the three arms. These plots show
the results without any statistical processing, while the analysis above attempts to control for pre-existing
differences between participants in each arm.

is, on average a youth who is enrolled in CHANGE has 42% lower probability to engage

in CAS post-intervention than a youth with identical starting characteristics (including

baseline rate of CAS) who did not receive the intervention. For the DC group, the posterior

median of 0.70 relative risk indicated a tendency towards improvement, though the 95%

credible interval did not exclude 1 (95% CrI: 0.39, 1.15) and so an improvement cannot be

demonstrated with high probability.

Moving to the second outcome, the model estimated that the median relative risk for

CVS in the CHANGE group was 0.73, with credible interval narrowly inclusive of 1 (95%

CrI: 0.50, 1.01). The 90% credible interval excluded 1, as shown in Figure 4.2. For the DC

group, the median relative risk was 0.84 (95% CrI: 0.54, 1.21).

We conclude from the analysis that CHANGE produced an improvement in HIV risk

behaviors with high probability (at least 97.3% probability of improvement in the posterior

for both outcomes). DC showed a tendency towards improvement in these behaviors but a

neutral or negative effect could not be excluded at the 90% credible interval level. Since the

analysis controlled for the selection of youth as peer leaders, estimated improvements can be

attributed to changes across the entire group, including youth who were not selected as peer

leaders. This provides evidence that the intervention created improvements via spillovers

from the directly treated peer leaders to the youth who were not selected, as hoped.

Direct examination of the average values of the outcome variables for each arm at each
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point in time (Figure 4.3) shows another interesting trend. Improvements in the CHANGE

group happen faster than the DC group: most of the improvement for CHANGE occurs

by the one-month survey, while improvements in the DC group are not fully realized until

month three. Fast results are important for two reasons. First, rapid adoption of protective

behaviors helps to immediately curtail transmission in a high-risk population. Second, high

transience among YEH means that a non-negligible portion of youth will have left the center

by the time a three-month intervention is completed. We conclude that the AI-augmented

intervention implemented with CHANGE has an additional potential advantage over an

intervention where peer leaders are selected with the standard DC method.

4.6 Discussion

This project provides evidence that AI methods can be used to improve the effectiveness

of social network interventions in public health. Our field trial of the AI-augmented

intervention resulted in estimated reductions of approximately 30-40% in the relative risk of

engaging in key risk behaviors post-intervention. By comparison, an intervention planned

with the status quo method of selecting high degree nodes resulted in a median estimated

improvement of 16-30% in relative risk. More broadly, we hope that our experiences over

the course of the project can provide generalizable lessons about how AI research can

be successfully employed for social good. There have been recent attempts by others

to synthesize principles for AI for Social Good research [FCKT20, TCH+20]. We offer a

complementary perspective shaped by the process of deploying a specific community-level

intervention. In particular, existing discussions of best practice often focus in large part

on ethics, data privacy, and building trust with stakeholders. While such considerations

are indispensable, it is also important for the research community to investigate the on-the-

ground components of developing and deploying an impactful intervention. We highlight

five points.

First, the starting point was to listen to domain experts and understand where in the

problem domain AI could be most impactful. We did not approach this project with a
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preexisting intention to apply influence maximization to the choice of peer leaders. Rather,

this emerged organically from discussions between the AI and social work sides of the

research team as a topic where an AI-augmented intervention was both technically feasible

and likely to improve outcomes. Success is less likely when AI researchers start with a favored

technique and search for an application.

Second, data was overwhelmingly the bottleneck to the AI component of the intervention.

Computational work on influence maximization to date had largely assumed a great deal

of information would be known – the structure of the graph, the model for information

diffusion, etc. None of this information was in fact available for YEH (or would likely

be available in other public health settings). Moreoever, gathering this data is itself time-

consuming and costly, requiring unsustainable effort on the part of an agency wishing to

deploy the intervention on their own. Much of the technical focus of the research consisted of

finding ways to reduce the amount of data which needed to be gathered for the intervention

to succeed. Finding ways to reduce or eliminate data needs through improved algorithm design is

an important part of producing deployable AI interventions in a community health context.

Third, simplicity is valuable. As an example, prior to developing CHANGE, we designed

a much more theoretically sophisticated algorithm for collecting network data which enjoyed

provable guarantees for certain families of graphs [WIRT18]. However, it quickly became

apparent that this algorithm would be difficult to deploy in practice because it required a

large number of sequential queries (the node which is queried on step 1 determines the

node who is to be queried on step 2, and so on). This was impractical in the context of a

program working with YEH where any given youth may be difficult to find, interrupting

the entire process. More generally, if the algorithm requires tight coupling with the outside

world (many steps where information is input, the algorithm recommends a very specific

action, more information is input, and so on) then there are more things that can go wrong

which are not captured in the computational formalization of the problem. This poses

a contrast to the way that simplicity is often operationalized in AI for social good work

as either explainability [FCKT20] or as methodological simplicity [TCH+20] (e.g., using well-
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developed techniques instead of a new algorithm). Both explainability and methodological

simplicity are of course valuable in many settings but in our experience neither was first-

order requirement: the algorithm can solve a complex optimization problem internally so

long as the way that it interacts with the outside world is simple and robust. We believe that

this operational simplicity is an under-emphasized design criterion for AI for Social Good.

Fourth, smaller pilot tests were a valuable part of the project prior to embarking on a

larger field trial. We conducted several such tests, each of which consisted of a deployment at

a single drop-in center, in order to test earlier versions of our system [WOVH+18, YCXJ+16,

YWR+17]. This helped reveal key issues which needed to be addressed. For example,

we quickly discovered that a plan to collect network information via Facebook was not

viable with this population and that manual collection of network data entailed a great

deal of effort. We also quickly observed that peer leaders often did not attend the training,

requiring on-the-fly adjustments over the course of the program. Addressing such issues

was necessary to the success of the overall project (and turned out to provide much of the

technical challenge involved). It would have been very difficult to identify these challenges without

piloting algorithms in the actual environment where they will be used. It was also helpful for

computer scientists on the research team to be regularly present onsite during the pilot

deployments to learn more about the environment and help coordinate the initial attempts

at using the algorithm.

Fifth, community engagement and trust was essential to the success of the project.

Beyond the research team, a number of stakeholders needed to be involved in the process.

For example, we needed buy-in from each of the drop-in centers to conduct the study at

the center, enroll their clients, and use their facilities. We regularly convened a community

advisory board with representatives from each of the drop-in centers along with members

of the research team to provide information about the study progress, explain the methods

being used, and share information which could be helpful to other center activities. Just

as critical as the center leadership though, were the youth themselves. We asked youth

to disclose sensitive information, including their HIV risk behaviors and social contacts.
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Especially for the YEH population, which is less inclined than most to engage with authority

figures, building trust is essential. We found two factors to be especially important in

establishing this trust. First, the social work portion of the research team had deep roots

in the community, having regularly offered services at these drop-in centers for the past

ten years. Second, transparency about why information was being collected was critical.

We observed substantially increased willingness to disclose information related to social

contacts when researchers explained how this information would be used in the study (i.e.,

that a computer program would be used to select some people as peer leaders based on

their contacts) than when such an explanation was not proactively given. A critical part of

the peer change agent model is empowering youth to make a difference in their community, and this

philosophy extends to the way that AI should be used in a community setting.

Our hope is that this project provides one example towards a broader research agenda

aiming at AI techniques which can be successfully used to improve health and equity within

our communities. A great deal of work remains. Just within the context of social network

intervention, future work should explore other intervention designs (e.g., interventions

which attempt to modify network structure by fostering supportive relationships), methods

for further reducing data requirements (e.g., by using administrative data to infer social

connections), and more deeply investigate the relationship between information diffusion

and behavioral change. However, the results from this trial provide evidence that AI can

substantially improve the quality of services offered to the most vulnerable among us.
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Part II

Uncertainty and optimization
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Chapter 5

Targeting interventions against

infectious diseases under uncertainty

Treatable infectious diseases cause hundreds of thousands of cases of disability and death

worldwide. Often, this burden is caused by long-term diseases which are continuously

present in the population, as opposed to short-term epidemics like influenza. For instance,

tuberculosis (TB) deaths in India numbered over 480,000 in 2014 [WHO15b], and even

developed nations like the U.S. have observed over 395,000 cases of gonorrhea in 2015

[CDC15]. In both cases, many individuals remain undiagnosed although treatment is

available. Outreach efforts to increase screening can lower disease burden; e.g., the Indian

government conducts advertising campaigns for TB awareness. Limited resources require

these campaigns to be carefully targeted at the most effective groups for reducing disease.

Targeting is complicated by changing population dynamics, as individuals age and migrate

over time, as well as by uncertainty around disease transmission rates. Officials currently

make such decisions by hand as no algorithmic assistance is available.

To remedy this situation, we design an algorithm to divide a limited outreach budget

between demographic groups in order to minimize long term disease prevalence under

uncertain population dynamics. Our approach contrasts with existing algorithms for

disease control, which often consider disease spread between nodes on a static graph
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[SAPV15, BCGS10]. This is a sensible model of short term disease spread but is less suitable

for long-term planning in diseases such as TB or gonorrhea, where people are born, die, age,

and move [LS12]. Accounting for changes in the underlying agents is particularly salient for

a policymaker who must divide resources between demographic groups over many years to

maximize societal long-term health. For instance, India produces 5 year plans to combat TB

[RNT16]. Our approach also contrasts with previous work on agent-based disease models

[JR17, LBK+10]. Such models may include realistic behaviors, but their complexity usually

precludes algorithmic approaches to find the optimal policy in an entire feasible set.

An additional challenge, largely unexplored in previous algorithmic work, is that of

uncertainty. Data is always limited; policymakers are never sure of exactly how many people

are infected in each group, or of the contact patterns between them. In order to impact real

world policy, algorithms for resource allocation must account for such uncertainties.

We introduce a model which both captures underlying agent dynamics and can be solved

using an algorithmic approach in a stochastic setting. We make four main contributions.

First, we present the MCF-SIS model (Multiagent Continuous Flow-SIS) where disease

spreads in a multiagent system with birth, death, and movement. The system evolves

according to SIS (susceptible-infected-susceptible) dynamics and is stratified across age

groups. This introduces a new problem in multiagent systems: computing the optimal

resource allocation under MFS-SIS, as in the case where an outreach campaign must decide

how to divide limited advertising dollars (or rupees) between the groups.

MCF-SIS introduces a continuous, nonconvex, highly nonlinear optimization problem

which cannot be solved by existing methods. Many factors must be accounted for. E.g.,

between-group disease transmission makes focusing on the groups with the most infected

agents suboptimal. Moreover, agents in a targeted group are not cured instantaneously,

so, e.g., to reduce prevalence in age group 30, we may need to start targeting resources at

age 27. Lastly, we consider a stochastic setting where parts of the model (contact patterns

between agents, the number of infected agents in each group, etc.) are not known exactly

but are drawn from a distribution.
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Our second contribution shows that optimal allocation in MCF-SIS is a continuous submodu-

lar problem. This opens up a novel set of optimization techniques which have not previously

been used in disease prevention. Continuous submodularity generalizes submodular set

functions to continuous domains. Intuitively, infections averted by spending one unit of

treatment resources can no longer be averted by additional spending, creating diminishing

returns. Continuous submodularity is deliberately enabled by our modeling choices, in particular

our shift from the discrete, graph-based setting common in previous work [SAPV15, BCGS10] to a

continuous, population-based model.

Our third contribution is a new algorithm called DOMO (Disease Outreach via Multiagent

Optimization), which obtains an efficient (1− 1/e)-approximation to the optimal allocation.

Our algorithm builds on a recent theoretical framework for submodular optimization

[BMBK17]. DOMO’s generalization of this framework to the stochastic setting may be of

independent interest.

Our fourth contribution is to instantiate MCF-SIS in two domains using empirical data

which takes into account behavioral, demographic, and epidemic trends: first, TB spread in

India, and second, gonorrhea in the United States. DOMO averts 13,000 annual person-years

of TB and 20,000 person-years of gonorrhea compared to current policy.

5.1 MCF-SIS: a new modeling approach

The MCF-SIS model has two goals: to enable both realistic population dynamics and efficient

optimization. In MCF-SIS, a finite population evolves in discrete time. Each agent has two

possible states. In the susceptible (S) state, an agent has not contracted the disease. In the

infected (I) state, an agent can transmit the disease to others. They can also be cured and

return to the susceptible state.

The population is segmented into n groups. Our running example is where each group

is an age range because transmission patterns for infection vary over age. Figure 5.1

shows this instantiation of the model. However, our techniques generalize to any way of

segmenting the population (e.g., geographic location or occupation). We denote the number
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Figure 5.1: Top: Illustration of the MCF-SIS model. Bottom: a single step in the model with 2 age groups.

of susceptible agents in each group at time t as the vector St where St
i is the number of

susceptible agents of group i. Likewise, It gives the number of infected agents. The total

population is Nt = St + It. At each time step, agents move between groups according to

a movement matrix M, where Mij is the fraction of agents in group i who move to group

j. For instance, when the groups represent age, agents advance from age i to i + 1. So, we

have Mi,i+1 = 1, i = 1...n− 1, and all other entries of M are zero. Agents die of natural

causes at rate µi. New agents enter the population through birth or migration, given by the

vector S̃t. We also allow for an exogenous inflow of infected agents Ĩt.

Disease spreads through contact with infected agents, described by the matrix β: agents

in group i interact with group j with frequency βij. A fraction ρt
i = ∑n

j=1 βij
It
j

Nt
j

of group i

encounters an infected agent and becomes infected themselves. At each time step, a fraction

di of infected agents in group i die. Of those who do not die, a fraction νi are cured and

become susceptible again. νi is referred to as the clearance rate, and captures the total rate

at which infected agents are diagnosed, enter treatment, and are successfully cured.

While compartmental models like ours do not simulate the micro-level details of indi-

vidual agents, they can be realistic enough to capture long term trends. Similar models are

commonly used in health policy analyses [WWC+05, CMF11, DGCS12].

Interventions: We consider optimal resource allocation modeled through the clearance

vector ν. Suppose a policymaker can conduct outreach to selected groups. Since some
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percentage of people who see an advertisement will enter treatment, we can model the

policymaker’s decisions as increasing νi for the targeted groups. We suppose the algorithm

has a budget K for new advertising to split among the groups. ν starts at a lower bound

L, reflecting pre-campaign treatment rates. The algorithm may select any post-campaign ν

with ||ν− L||1 ≤ K and Li ≤ νi ≤ Ui ∀i, where U < 1 is an upper bound. Note that U is

strictly less than 1 because we can never realistically treat 100% of any given group. Denote

the set of ν satisfying these constraints as the feasible polytope P . While we focus on the

above P for concreteness, our approach works for any downward-closed polytope. The goal

is to select a ν ∈ P which minimizes the total infected agents over a time horizon T.

Optimization formulation: We assume that the number of infected agents (and hence

deaths) is small compared to the total population. For instance, less than 1% of the

total population is infected with TB in India or gonorrhea in the U.S. [WHO15b, CDC15].

Therefore, we consider the total population size (the vector Nt) as fixed independently of

ν. Thus, the state of the system is captured just by the infected vector It. A single group i

evolves as

It+1
i =

n

∑
j=1

Mji

(
St

j(1− µj)
n

∑
k=1

β jk
It
k

Nt
k

+ (1− νj)(1− dj)It
j

)
+ Ĩt

i .

The expression in parentheses is the number of infected agents in group j. The first term

is the number who are newly infected and the second is the number from previous steps

who are not cured and do not die. The outer summation accounts for the number of these

infected agents who transition from group j to group i. Lastly, we add the new arrivals Ĩt
i .

We can iterate the equation for each group forward from t = 1...T in order to obtain the

total number of infected agents at time T. Instead though, will work with an equivalent

matrix formulation of the system for ease of notation. For convenience, we will use the

augmented state vector xt = [It 1]. That is, xt is the number of infected people appended

with a single one. The one is just for mathematical convenience. We formulate a time-varying
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linear operator Bt(ν) such that xt+1 = Bt(ν)xt via the block form

Bt(ν) =

At(ν) Ĩt

~0 1


where the block At(ν) is defined as

At(ν) = M>
(

diag(St)diag(1− µ) β diag
( 1

Nt

)
+diag(1− ν)diag(1− d)

)
.

where diag(v) is the matrix with the entries of v on the diagonal. At(ν)It gives the

number of infected agents given only the internal dynamics of the population, resulting in a

total of At(ν)It + Ĩt infected agents. Figure 5.1 shows an example of a simple case of the

model with two age groups. Example parameter values are given, along with the initial

prevalence I0. The first equation computes the matrix A0(ν). The second applies A0(ν) to

the initial prevalence I0 and then adds the exogenous inflow Ĩ0. The number of infected

agents in group 1 increases because more agents are infected than cured. These agents then

transition to group 2. Because there are only two groups in our modeled population for this

example, all agents in group 2 exit the modeled population.

We aim to minimize the total infected agents over T steps:

min
T

∑
t=1

c>
[

1

∏
j=t

Bj(ν)

]
x0

1>ν ≤ 1>L + K (5.1)

Li ≤ νi ≤ Ui ∀i = 1...n

c can be any nonnegative cost vector, e.g., c = [~1 0] (n ones and a zero) sums over the

number of infected agents in each group. x0 is the initial state (number of infected agents).
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We use the notation ∏1
j=t Bt(ν) as shorthand for Bt(ν)Bt−1(ν)...B1(ν).

5.2 Algorithmic approach

We now turn to computing a (near) optimal solution to Problem 5.1. This is a continuous

optimization problem since each νi may take any value in [Li, Ui]. Unfortunately, the

objective function is nonconvex, which rules out standard methods for efficiently obtaining

good solutions. It is also highly nonlinear since the decision variables ν are raised to the

power T, which may be large (e.g., a time horizon of 10 or 20 years). This suggests that

many local optima could be present and renders optimization more complicated.

However, MCF-SIS’s definition contains useful structure. Intuitively, resources have

diminishing returns: infections averted by increasing one νi can no longer be treated by

increasing some other νj. Diminishing returns suggests submodularity. However, since our

optimization problem is not discrete, standard submodularity and the greedy algorithm

do not apply. Instead, we show that our objective is continuous submodular, a generalization

of submodularity to continuous domains [Bac15, BMBK17]. Continuous submodularity

enables efficient optimization and allows us to handle the stochastic case in a natural

manner. This framework is crucially enabled by the modeling choice to shift from the

discrete, graph-based setting common in previous work [SAPV15, BCGS10, CHT09] to a

continuous, population-based model. Not only does our model account for population

dynamics, but it is also more amenable to optimization.

We now define continuous submodularity1. Let ∧ and ∨ denote coordinatewise min-

imum and maximum respectively. A function F : Rn → R is continuous submodular if

F(x) + F(y) ≥ F(x ∨ y) + F(x ∧ y) for all feasible x, y. This is reminiscent of submodular

set functions, but extended to the continuous domain. F is called continuous supermodular

if the inequality is reversed. If F is continuous submodular, −F is continuous supermodular.

Note that continuous submodularity is not convexity or concavity; it is a distinct class of

1Technically, we use the stronger condition of DR-submodularity. Details related to showing our objective is
DR-submodular can be found in the supplement.
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functions with distinct optimization techniques.

We will draw on these techniques to Problem 5.1. Bian et al. [BMBK17] define a theoreti-

cal framework for optimizing continuous submodular functions. In order to make use of this

framework, we need to first show that our problem falls into it. Then, we need to fill in the

algorithmic components required to instantiate the approach that the framework suggests

(two oracles explained below). Lastly, we need to prove that our objective is sufficiently

smooth for the resulting algorithm to converge in a reasonable number of iterations. None

of these pieces are covered by previous work; they are algorithmic contributions specific to

our domain.

We start out by showing that the continuous submodularity framework applies. Denote

the objective of Problem 5.1 as F(ν). We will show that F is continuous supermodular which

in turn implies that −F is continuous submodular. Since minimizing F is equivalent to

maximizing −F, this will allow us to design an efficient algorithm based on continuous

submodularity. Our proof that F is supermodular has two steps. First, we show that F is a

posynomial in the variables 1− νi. A posynomial is a polynomial with entirely nonnegative

coefficients2. Then, we will show that any function which is a posynomial in 1 − ν is

continuous supermodular in ν. We start by showing the following:

Lemma 6. F is a posynomial in the variables 1− νi.

Proof. First, note that F depends on ν only through the term diag(1− ν). Note also that

every term in the expression for the block At(ν) is nonnegative. Since matrix multiplication

is just a series of multiplications and additions, it follows that c>∏1
j=t
[
B(ν)j] x0 (and hence

the sum over time t = 1...T) is a polynomial in 1− ν and all of the coefficients of this

polynomial are nonnegative. This can also be seen through the expression for the evolution

of a single group, which contains only terms of the form (1− νi) multiplied by nonnegative

coefficients.

Note that this step hinged on MCF-SIS’s continuous, population-based nature. Since F is

2Under some circumstances, posynomials can be optimized via geometric programming. Unfortunately,
this does not work for our problem since the feasible set is not convex in 1− ν.
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a posynomial in 1− νi, it can be written in the form F(ν) = ∑`
j=1 aj ∏n

i=1(1− νi)
pij where aj

is a nonnegative coefficient for term j and pij is a nonnegative integer. This representation

does not have to be computed; its existence is just useful for the proofs.

We now turn to showing that any function that is a posynomial in 1− ν is continuous

supermodular in ν. Our result builds on the following lemma:

Lemma 7 (Staib and Jegelka (2017)). Let f1... fn : R→ R+ be nonnegative, differentiable functions

which are either all nonincreasing or all nondecreasing. Then, F(x) = ∏n
i=1 fi(x) is continuous

supermodular.

Using this, we show the following:

Lemma 8. Whenever F is a posynomial in 1− ν, it is also continuous supermodular in ν.

Proof. First, note that continuous supermodularity is preserved under nonnegative linear

combinations. Hence, we focus on an individual term ∏n
i=1(1− νi)

pij in the posynomial

representation of F. For each i = 1...n, define fi(ν) = (1 − νi)
pij . Note that each fi is

nonincreasing in νi since 0 ≤ νi < 1. Further, fi(νi) ≥ 0 always holds. The conclusion now

follows from Lemma 7.

To sum up: we want to minimize F, which via Lemma 6 is a posynomial in 1− ν. Via

Lemma 8, this implies that F is continuous supermodular in ν. Hence, maximizing −F is

a continuous submodular optimization problem. We will actually maximize the objective

G(ν) = −F(ν) + M, where M is any constant large enough to ensure that G is nonnegative.

Clearly, this is also equivalent to minimizing F.

5.2.1 The DOMO algorithm

We now introduce the DOMO algorithm (Disease Outreach via Multiagent Optimization,

Algorithm 9) to exploit continuous submodularity. We start out with the deterministic

setting where model parameters are fully known. Here, DOMO builds on the Frank-Wolfe

approach [BMBK17] (though new techniques are needed in the stochastic setting). DOMO
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generates a series of feasible solutions ν0...νR, where R is the total number of iterations. More

iterations imply greater accuracy (Theorem 1 bounds the number needed). The algorithm

starts at ν0 = L, the lower bound. Each iteration alternates between two steps (lines 4-5).

First, it computes the gradient of the objective at the current point. Second, it takes a step in

the direction of the point which optimizes the gradient over the feasible set P . Essentially,

at each iteration the algorithm spends a fraction 1
R of the budget according to the current

gradient. Higher R allows finer control over the solution.

It is known that this strategy gives a (1− 1/e)-approximation for continuous submodular

functions [BMBK17]. However, it is not an out-of-the-box approach (even in the deterministic

setting). DOMO requires two oracles (specific to our problem) to instantiate the algorithm – a

gradient oracle which supplies the gradient of G at any given point, and a linear optimization

oracle which maximizes a given linear function over the feasible set P . Additionally, the

number of iterations (and hence runtime) required is potentially unbounded. We prove (in

Theorem 1) that our objective is sufficiently smooth for the algorithm to converge efficiently.

We first supply appropriate oracles.

Gradient oracle: Instead of tediously computing the posynomial representation, we

directly compute the gradient using the block matrix representation of MCF-SIS. Denote

Yt(ν) = ∏t
j=1 B(ν)j. We can concisely express the gradient via matrix calculus [PP08]:

∂G(ν)

νi
= −

T

∑
t=1

Tr

[(
∂c>Yt(ν)x0

Yt(ν)

)>
∂Yt(ν)

νi

]
=

−
T

∑
t=1

Tr

[
cx>0

t

∑
`=1

[
`+1

∏
i=t

Bi(ν)

]
∂B`(ν)

∂νi

[
1

∏
i=`−1

Bi(ν)

]]

where the first step is the chain rule and the second follows from the product rule

and induction on n. Tr denotes the matrix trace. This reduces gradient evaluation to

computing ∂
∂νi

Bj(ν) for each i and j. Bj depends on νi only through the block Aj(ν), so we

have ∂
∂νi

Bj(ν) = (1− di)M> Ji,i, where Ji,i is the matrix with a one in entry (i, i) and zeros

elsewhere. By appropriately ordering multiplications, the entire procedure uses T matrix

multiplications.
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Linear optimization oracle: Since P is a polytope, linear optimization could be per-

formed by solving a linear program. However, exploiting the special structure of P lets

us perform linear optimization in time O(n log n) via a simple greedy algorithm (function

GreedyLinear in Algorithm 9). This algorithm simply orders the group i = 1...n according

to ∇iG(ν) (Line 10). It then proceeds through the groups in this order, spending as much of

the budget as possible (Line 15) before moving on to the next.

Algorithm 9 DOMO

1: function DOMO(R, K)
2: ν0 ← L
3: for k = 1...R do
4: ∇k ← GradientOracle(νk−1)
5: yk ← LinearOracle(∇k, K)
6: νk ← νk−1 + 1

R yk

7: end for
8: return νR

9: end function
10: function GreedyLinear(∇, K)
11: y ← L
12: π ← ordering of 1...n such that ∇π(i) ≥ ∇π(i+1) ∀i
13: i ← 0
14: while ||y− L||1 < K do
15: yπ(i) += min(Uπ(i) − Lπ(i), K− ||y− L||1)
16: i += 1
17: end while
18: return y
19: end function

Lemma 9. GreedyLinear finds an optimal solution to the linear optimization problem over P .

Proof. We recognize the linear optimization problem as a fractional knapsack problem where

each item takes up the same amount of space. The value of each item is the corresponding

entry of the gradient. Hence, greedily taking as much as possible of the highest-value items

is optimal.

Convergence analysis: The runtime of Algorithm 9 depends on the number of iterations

R, which Bian et al. [BMBK17] show must be proportional to the Lipschitz constant of the

gradient of G. Essentially, functions with Lipschitz continuous gradients are smooth in a
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sense that allows the algorithm to quickly converge. Let Umax = maxi Ui. We bound the

Lipschitz constant for our model and show that

Theorem 10. For any ε > 0, using R = K
ε

(
T

1−Umax

)2
iterations, the ν output by Algorithm 9

satisfies G(ν) ≥
(
1− 1

e − ε
)

G(ν∗), where ν∗ is an optimal solution.

The proof is given in the supplement due to space constraints. We remark that Umax is

always bounded away from 1 since we can never realistically treat 100% of any single group.

Thus, the number of iterations is O
(

KT2

ε

)
. Each iteration requires one linear optimization

over P (which takes time O(n log n) using GreedyLinear) and one gradient evaluation

(which takes time O(Tnω), where ω is the matrix multiplication constant). The final runtime

is O
(

KT3nω

ε

)
.

5.3 Stochastic optimization

In reality, some parameters of the multiagent system will not be known exactly. For instance,

the contact matrix β is almost never precisely known in practice. Additionally, for many

diseases, there is considerable uncertainty about the initial prevalence I0 (Suen et al. 2015).

We now extend DOMO to the stochastic case where model parameters are drawn from a

distribution instead of known exactly. Hence, we can infer an appropriate prior distribution

from whatever data is available and optimize the expected value over this distribution. Our

formulation is very general, and will allow any of the parameters (M, β, I0, Ĩ, etc.) to be

unknowns. Suppose that we have an uncertainty set Ξ for the joint values of the unknowns

and Ξ is equipped with a distribution D. Let G(·, ξ), ξ ∈ Ξ denote the objective for any

fixed set of parameters. We wish to solve the stochastic problem

max
ν∈P

E
ξ∼D

[G(ν, ξ)] (5.2)

Such stochastic problems are typically difficult computationally. For instance, Zhang

et al. [ZP14b] study vaccination on a graph when the initially infected nodes (I0 in our
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model) are uncertain. To design a scalable algorithm, they must assume that D is an

independent distribution. However, I0 for different groups will clearly be correlated because

of the underlying multiagent dynamics. A common approach to accounting for uncertainty

without such strong assumptions is robust optimization, which solves the worst case problem

maxν∈P minξ∈Ξ G(ν, ξ). Han et al. [HPNP15] take this approach for a vaccination problem

when the graph β is unknown. However, robust optimization introduces a computationally

challenging bilevel optimization problem which requires specialized techniques. This makes

it difficult to incorporate uncertainty in multiple parts of the model.

We resolve these difficulties through an alternate approach which efficiently handles

uncertainty over any of the model parameters, expressed through an arbitrary distribution D.

Moreover, we obtain provable guarantees just as in the deterministic case. We start out by

noting that the objective of Problem 5.2 is continuous submodular since it is a nonnegative

linear combination of continuous submodular functions. Also note that Algorithm 9 accesses

the objective only through GradientOracle. While we can no longer access the gradient in

closed form, the key idea is to instead use a stochastic approximation. At each iteration, we

draw r samples ξ1...ξr i.i.d. from D. Our estimate of the gradient is ∇̂ = 1
r ∑r

i=1∇G(ν, ξi).

We then modify Line 5 of Algorithm 9 to call LinearOracle(∇̂).
To our knowledge, no previous work has analyzed stochastic continuous submodular

optimization. We give a new analysis which draws on tools for analyzing stochastic concave

problems [HL16]. We extend these techniques to (nonconcave) continuous submodular

functions and prove the following guarantee:

Theorem 11. Using r =
(

4KT
1−Umax

)2
samples, DOMO outputs a ν satisfying E [G(ν, ξ)] ≥(

1− 1
e − ε

)
E [G(ν∗, ξ)] where ν∗ is an optimal solution to Problem 5.2. The number of iterations

is the same as Theorem 1.

Note that the guarantee for E[G(ν, ξ)] exactly matches that for G(ν) in the deterministic

case. Further, our analysis generalizes to any smooth continuous submodular function and

may be of interest in other domains.
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Table 5.1: Infected people per 100,000 according to the National Family Health Survey. Reported in (Suen et
al. 2015).

Year/Age 30 35 40 ...

1993 555.499 680.426 1059.359 ...
1998 781.136 940.218 827.718 ...
2003 329.045 453.052 522.364 ...
2005 539.154 625.982 722.140 ...

Table 5.2: Example parameters. E.g., d = 0.544 indicates that 54.4% of people with active TB die each year.
Ranges indicate variance over age and/or year.

Parameter Value Source

Starting pop. 355,692,752 [UN15]
Total infected 2,949,057 (Suen et al. 2015)
Status quo ν 0.07 - 0.13 [RNT16]
µ 0.003 - 0.02 [WHO15a]
d 0.544 (Tiemersma 2011)

5.4 Experiments

We now present experimental results on two real-world problem instances: TB prevention in

India and gonorrhea prevention in the United States. In both, we produce a highly realistic

evaluation by instantiating MCF-SIS using demographic and epidemiological data drawn

from a variety of governmental and NGO sources. Since prevalence numbers are highly

uncertain, and the contact matrix β not explicitly known, we estimate a distribution over

both using this data and apply DOMO as described above. MCF-SIS is stratified by age. We

account for migration and births by comparing the number of individuals in each age group

at each year to the next, after accounting for non-disease deaths.

Tuberculosis: True TB prevalence in India is subject to great uncertainty, as many

patients do not report to approved treatment facilities [RNT10]. We estimate prevalence (the

initial infected vector I0 and new arrivals Ĩ) using age-stratified data provided by the Indian

government for the years 1993-2005 [IIP14], see Table 5.1. These figures are reported with

95% confidence intervals; we sample values of (I0, Ĩ) within these assuming a Gaussian

distribution. Table G.1 shows example parameter values. For each sample, we find the β̂ that

minimizes the mean squared error between the observed I and that predicted by MCF-SIS.
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Figure 5.3 shows an example β̂; darker cells represent more interaction. The matrix is sparse,

with most entries along the diagonal (representing within-group interaction) and a few

groups who interact more with others. Population statistics and disease parameters (e.g.,

d) are taken from World Health Organization lifetables, the Indian government Revised

National Tuberculosis Control Program reports, and United Nations Statistics Division

demographic reports (see supplement). Our model includes 30 age groups representing

ages 30-60.

Gonorrhea: We infer the initial prevalence I0 and new arrivals Ĩ from reported disease

cases. However, up to 80% of cases are asymptomatic and may remain undetected [CDC15].

We assume a uniform distribution for the true prevalence at every age (I) with an upper

limit of 4 times the reported values and a lower bound equal to the value reported by the

U.S. Centers for Disease Control. We generate a set of sampled (I0, Ĩ) from this uniform

distribution. For each sample, we infer the β matrix which best matches the age-stratified

prevalence rate in the same manner as for TB. Data on population demographics is taken

from the WHO and the U.S. Census (details in the supplement). Our model includes 46 age

groups, representing ages 15-60.

Baselines: No previous work directly addresses our setting, so we define several base-

lines. First, degree, which greedily spends the budget on the groups with highest weighted

degree with respect the contact matrix β. This captures the intuition that groups which

are in contact with many others are important targets for treatment Second, eigen, which

greedily spends the budget on groups according to their eigenvector centrality in β. De-

gree and eigen test whether it is necessary to consider population dynamics, or if just

the contact matrix is sufficient. Third, myopic, which selects the ν that will result in the

largest reduction in infections after a single timestep in the MCF-SIS. This can solved exactly

via linear programming. Myopic tests if DOMO’s long-term reasoning is needed. Fourth,

prevalence, which allocates resources greedily to the groups with the largest number of

infected individuals. This is common practice in epidemiology. Fifth, equal, which splits the

budget equally over all groups. Sixth, SQ which allocates the budget proportional to the
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Figure 5.2: Top: Improvement in mean case-years averted by DOMO over each other algorithm. Bottom:
Fraction of 100 sampled instances in which DOMO’s averted case-years is at least as high as each baseline.

status-quo ν produced by current government policies. This models spending the budget

according to the same strategy as is currently used.

Results: For each domain, we obtain the status quo treatment rate νSQ from existing

data (which is the lower bound L). Then, we assume that a policymaker may distribute

an additional budget K via an outreach campaign. We set U = 1.05 · νSQ. We do not plot

runtime because all algorithms, implemented in Python, run in under 10 minutes on all

datasets and parameter combinations. DOMO is run with R = 100 iterations and r = 100

samples.

We start with TB. The top row of Figure 5.2 shows the improvement in objective value of

DOMO over each other algorithm. Improvement is in terms of disease burden: the total

person-years of disease summed over time 1...T (the objective function). Each plot shows

two values of K on the x axis corresponding to small and large budgets. The y axis plots

the difference between the disease burden under each baseline versus DOMO (note the

log scale). Disease burden is calculated by averaging over 100 samples for the unknown
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Figure 5.3: Left: a sampled β matrix. Right: illustrated allocation

parameters. One plot shows the short horizon T = 5, and one shows the long horizon

T = 25.

DOMO outperforms all baselines (has positive improvement) under each configuration.

The difference is larger for K = 0.3 than K = 0.1, indicating that DOMO makes more strategic

use of the additional resources. Most differences also grow as T increases; the longer time

horizon presents a more challenging planning problem. The two closest competitors are

degree and eigen, which obtain relatively close values for K = 0.1. However, their gap

with DOMO increases substantially for K = 0.3. The performance gap is very significant in

policy terms: for K = 0.3, T = 25, DOMO averts (approximately) between 64,000 to 300,000

person-years of disease more than each baseline. All differences are statistically significant

(t-test, p < 0.001). Given the annual death rate d = 0.544, DOMO averts over 6,500 TB

deaths per year compared to the status quo governmental policy.

Further, DOMO performs optimally out of all considered algorithms in at least 90% of

specific realizations of the parameters. In Figure 5.2, the y axis shows the fraction out of 100

randomly sampled parameter combinations in which DOMO performed at least as well as

every other algorithm. We again plot results for T = 5, 25, and K = 0.1, 0.3. The values are

all fairly high, ranging from 0.9 to 1. We conclude that our stochastic optimization approach

successfully captures uncertainty in this domain because it has high performance almost all

circumstances, not just in expectation.
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Figure 5.3 contrasts the allocation made by DOMO and other policies. We focus on

K = 0.3, T = 10. Each line shows the amount of budget the corresponding algorithm

allocates to each group (shown on the x axis). To avoid crowding the plot, we show DOMO,

degree, prevalence, and SQ. Myopic’s allocation was very close to prevalence while eigen’s

was similar to degree. We see that SQ allocates the budget relatively uniformly, while

DOMO concentrates heavily on particular groups. Moreover, DOMO does not simply

allocate to high-prevalence groups. This indicates that DOMO exploits long term dynamics

beyond which agents are immediately infected. DOMO also does not simply allocate to high

degree groups. Its allocation overlaps with the high degree elderly groups, but places little

budget on the high degree groups near ages 30 and 40. We conclude that DOMO leverages

non-obvious patterns in the multiagent system’s dynamics to outperform simpler heuristics.

We find that DOMO also performs better than the baselines in our gonorrhea example

(Figure 5.4). Generally, results are similar to TB, so due to space limitations, we show results

for T = 25. The left hand figure shows the improvement in disease burden that DOMO

makes over each baseline; DOMO substantially outperforms all of the baselines for both

values of K. For K = 0.3, T = 25, DOMO results in at least 500,000 fewer person-years

of disease than any other algorithm. The right hand figure plots the fraction of sampled

instances in which DOMO performs at least as well as each algorithm. DOMO outperforms

equal, degree, eigen, and SQ in 100% of instances. It outperforms myopic in approximately

75% of instances, and prevalence in 60-70%. DOMO’s expected performance is much higher

than prevalence because in those sampled instances where DOMO outperforms prevalence,

it does so by a large margin. When DOMO outperforms prevalence, it does so by 3.9 million

person-years on average. Conversely, when prevalence outperforms DOMO, it does so by

approximately 200,000 person-years on average.

5.5 Conclusion and additional related work

We develop an algorithmic approach to targeting disease outreach campaigns which synthe-

sizes agent-based modeling and algorithmic disease control. A large body of work in health
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Figure 5.4: Results for gonorrhea instance. Left: improvement in case-years averted by DOMO over each
other algorithm. Right: fraction of instances in which DOMO performs at least as well as each baseline.

policy and agent based modeling develops realistic disease models [JR17, PD09, SEM14,

BS14, PHSE17]. None use an algorithmic approach for disease control, instead examining

a limited set of policies that can be exhaustively searched. In contrast, we consider the

challenge of algorithmically optimizing over the entire feasible set.

Much algorithmic work focuses on immunizing the nodes of a graph to limit disease

spread [CTP+16, SAPV15, SHL15, BCGS10, DOT14]. None of this work considers the chal-

lenges of population dynamics. While others may examine subgroup dynamics [ZAS+16] or

time trends [PTV+10], our work presents a novel approach to optimizing resource allocation

for infectious diseases in a stochastic setting.
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Chapter 6

Risk-averse submodular optimization

This chapter explores risk-averse optimization, a related algorithmic problem to robust

optimization. Although not used in the HIV prevention application, it provides another

example of how techniques spanning the boundary between continuous and discrete

optimization can be used to tackle a wide range of problems.

Decision-making under uncertainty is an ubiquitous problem. Suppose we want to

maximize a function F(x, y), where x is a vector of decision variables and y a random

variable drawn from a distribution D. A natural approach is to maximize Ey [F(x, y)], i.e.,

to maximize the expected value of the chosen decision. However, decision makers are often

risk-averse: they would rather minimize the chance of having a very low reward than focus

purely on the average. This is a rational behavior when failure can have large consequences.

For instance, if a corporation suffers a disastrous loss, they may simply go out of business.

Or in many cases, low performance entails safety issues. For instance, if a sensor network

for water contamination detects problems instantly in 80% cases, but fails entirely in 20%,

the population will inevitably be exposed to an unacceptable health risk. It is much better

to have a sensor network which always detects contaminants, even if it requires somewhat

more time on average.

Hence, it is natural to move beyond average-case analysis and optimize a risk-aware

objective function. One widespread choice is the conditional value at risk (CVaR). CVaR takes
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a tunable parameter α. Roughly, it measures the performance of a decision in the worst

α fraction of scenarios. It is known that when the objective F is a concave function, then

CVaR can be optimized via a concave program as well. However, many natural objective

functions are not concave, and no general algorithms are known for nonconcave functions.

We focus on submodular functions. Submodularity captures diminishing returns and appears

in application domains ranging from viral marketing [KKT03], to machine learning [KT12],

to auction theory [Von08]. We analyze submodular functions in two settings:

Continuous: Continuous submodularity, which has lately received increasing attention

[Bac15, BMBK17, SJ17] generalizes the notion of a submodular set function to continuous

domains. Many well-known discrete problems (e.g., sensor placement, influence maxi-

mization, or facility location) admit natural extensions where resources are divided in a

continuous manner. Continuous submodular functions have also been extensively studied

in economics as a model of diminishing returns or strategic substitutes [KOS00, Sam16].

Our main result is a (1− 1
e )-approximation algorithm for maximizing the CVaR of any

monotone, continuous submodular function. No algorithm was previously known for this

problem.

Portfolio of discrete sets: Our results for continuous submodular functions also transfer

to set functions. We study a setting where the algorithm can select a distribution over

feasible sets, which is of interest when the aim is to select a portfolio of sets to hedge against

risk [OY17]. Similar settings have also been studied in robust submodular optimization

[KRG11, CLSS17, Wil18a]. We give a black-box reduction from the discrete portfolio problem

to CVaR optimization of continuous submodular functions, allowing us to apply our

algorithm for the continuous problem. The state of the art for the discrete portfolio setting is

an algorithm by Ohsaka and Yoshida [OY17] for CVaR influence maximization. Our results

are stronger in two ways: (i) they apply to any submodular function and (ii) give stronger

approximation guarantee. Allowing the algorithm to select a convex combination of sets is

provably necessary: Maehara [Mae15] proved that restricted to single sets, it is NP-hard to

compute any multiplicative approximation to the CVaR of a submodular set function.

129



We experimentally evaluate our algorithm for sensor resource allocation, focusing on two

domains: detecting contagion or rumors in social networks, and detecting contamination in

water networks. In both cases, our algorithm substantially outperforms baselines.

6.1 Problem description

In this section, we formally define continuous submodularity and the conditional value at

risk. We first study the continuous setting and then extend our results to discrete portfolio

optimization.

Continuous submodularity: Let X = ∏n
i=1 Xi be a subset of Rn, where each Xi is a

compact subset of R. A twice-differentiable function F : X → R is diminishing returns

submodular (DR-submodular) if for all x ∈ X and all i, j = 1...n, ∂2F(x)
∂xi∂xj

≤ 0 [BMBK17].

Intuitively, the gradient of F only shrinks as x grows, just as the marginal gains of a

submodular set function only decrease as items are added. Continuous submodular

functions need not be convex or concave (concavity requires that the Hessian is negative semi-

definite, not that the individual entries are nonpositive). We consider monotone functions,

where F(x) ≤ F(y) ∀x � y (� denotes element-wise inequality). We assume that F lies in

[0, M] for some constant M. Without loss of generality, we assume F(0) = 0 (normalization).

In our setting F is a function of both the decision variables x and a random parameter y.

Specifically, we consider functions F(x, y) where F(·, y) is continuous submodular in x for

each fixed y. We allow any DR-submodular F which satisfies some standard smoothness

conditions. First, we assume that F is L1-Lipschitz for some constant L1 (for concreteness,

with respect to the `2 norm1). Second, we assume that F is twice differentiable with L2-

Lipschitz gradient. Third, we assume that F has bounded gradients, ||∇F||2 ≤ G. Only the

last condition is strictly necessary; our approach can be extended to any F with bounded

gradients via known techniques [DBW12].

Conditional value at risk: Intuitively, the CVaR measures performance in the α worst

1We use the `2 norm for concreteness. However, our arguments easily generalize to any `p norm.
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fraction of cases. First, we define the value at risk at level α ∈ [0, 1]:

VaRα(x) = inf{τ ∈ R : Pry [F(x, y) ≤ τ] ≥ α}.

That is, VaRα(x) is the α-quantile of the random variable F(x, y). CVaR is the expectation

of F(x, y), conditioned on it falling into this set of α-worst cases:

CVaRα(x) = E
y
[F(x, y)|F(x, y) ≤ VaRα(x)] .

CVaR is a more popular risk measure than VaR both because it counts the impact of the

entire α-tail of the distribution and because it has better mathematical properties [RU00].

Optimization problem: We consider the problem of maximizing CVaRα(x) over x

belonging to some feasible set P . We allow P to be any downward closed polytope. A

polytope is downward closed if there is a lower bound ` such that x � ` ∀x ∈ P and for any

y ∈ P , ` � x � y implies that x ∈ P . Without loss of generality, we assume that P is entirely

nonnegative with ` = 0. Otherwise, we can define the translated set P ′ = {x− ` : x ∈ P}
and corresponding function F′(x, y) = F(x − `, y). Let d = maxx,y∈P ||x − y||2 be the

diameter of P .

We want to solve the problem maxx∈P CVaRα(x). It is important to note that CVaRα(x)

need not be a smooth DR-submodular function in x. However, we would like to leverage

the nice properties of the underling F. Towards this end, we note that the above problem

can be rewritten in a more useful form [RU00]. Let [t]+ = max(t, 0). Maximizing CVaRα(x)

is equivalent to solving

max
x∈P ,τ∈[0,M]

τ − 1
α

E
[
[τ − F(x, y)]+

]
(6.1)

where τ is an auxiliary parameter. For any fixed x, the optimal value of τ is VaRα(x)

[RU00]. It is known that when F(·, y) is concave in x, this is a concave optimization problem.
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However, little is known when F may be nonconcave.

6.2 Related work

CVaR enjoys widespread popularity as a risk measure in many domains, ranging from

finance [MOS07] to electricity production [YKRW11]. More broadly, there is a burgeoning

interest in methods which move beyond expected performance [ECGS11, YJTO11, YN13,

HN15]. Oftentimes, this concern is motivated by safety-critical domains where an algo-

rithm designer must be able to minimize the risk of disastrous events, not just guarantee

good results on average. Here, we survey the closest related work, dealing with CVaR

optimization.

Rockafellar and Uryasev [RU00] introduced CVaR and proposed a linear program for

optimizing it. This linear program only applies when utility is linear in the decision

variables. Iyengar and Ma [IM13] and Hong and Liu [HL09] present faster gradient-based

algorithms for the linear case. Here, we deal with nonlinear functions. The LP approach

can be extended via solving a general concave program when the utilities are concave. Our

main contribution is extending the range of optimizable functions to include nonconcave

continuous submodular objectives. Another body of work focuses on CVaR in reinforcement

learning and MDPs [PG13, TCGM15, CTMP15]. Lastly, [OY17] study CVaR for discrete

influence maximization; we contrast our results with theirs when we discuss the discrete

portfolio setting.

6.3 Preliminaries

We now review techniques for optimizing smooth continuous submodular functions. These

do not directly apply to CVaR, but our solution builds on them. An important property is

that continuous submodular functions are concave along nonnegative directions. Formally,

Definition 1. A function F(x) is up-concave if for any ξ ∈ [0, 1] and y ∈ P , F(x + ξy) is

concave in ξ.
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All continuous submodular functions are up-concave [BMBK17]. Monotone up-concave

algorithms are optimized via a modified Frank-Wolfe algorithm [BMBK17, CCPV11]. Frank-

Wolfe is a gradient-based algorithm originally introduced to maximize concave functions.

Consider an objective F. Frank-Wolfe algorithms start at an initial point x0 ∈ P and then

generate a series of feasible solutions x1...xK for some number of iterations K. At each

step k, the algorithm calculates the gradient at the current point, ∇F(xk−1). It then takes

a step towards the point vk ∈ P which lies furthest in the direction of the gradient. That

is, vk is the solution to the linear optimization problem arg maxv∈P 〈v,∇F(xk−1)〉. In the

standard Frank-Wolfe algorithm for concave functions, the algorithm then updates to a

convex combination of xk−1 and vk by setting xk = xk−1 + γk
(
vk − xk−1) for some step size

γk. Note that some entries of xk may be smaller than the corresponding entries of xk−1. This

is necessary for optimality: the algorithm may need to backtrack if it has made some entry

too large.

This update rule does not work for up-concave functions because the objective is not

concave along negative directions. Hence, the update for the modified Frank-Wolfe algorithm

is xk = xk−1 + γkvk, which only increases each coordinate. Because the algorithm is unable

to backtrack, it achieves a (1− 1/e)-approximation instead of the global optimum which is

achievable for fully concave functions. The process is analogous to the greedy algorithm

for submodular set functions, which successively includes elements based on their current

marginal gain. The continuous Frank-Wolfe algorithm instead successively increases entries

in the solution vector based on the current gradient.

6.4 Algorithmic approach

We now introduce the RASCAL (Risk Averse Submodular optimization via Conditional

vALue at risk) algorithm for continuous submodular CVaR optimization. RASCAL solves

Problem 6.1, which is a function of both the decision variables x and the auxiliary parameter

τ. Roughly, τ should be understood as a threshold maintained by the algorithm for what

constitutes a “bad" scenario: at each iteration, RASCAL tries to increase F(x, y) for those
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Algorithm 10 RASCAL

Require: K, u, s, LO
1: Y ← s samples i.i.d. from D
2: x0 ← 0, τ ← 0
3: for k = 1...K do
4: ∇̃ ← SmoothGrad(xk−1, τ, u)
5: v← LO(∇̃)
6: xk ← xk−1 + 1

K v
7: τ ← SmoothTau(xk−1, u)
8: end for
9: return xK

10:
11: function SmoothGrad(x, τ, u)
12: Iy(τ)← max(min( F(x,y)−τ

u , 1), 0) ∀y ∈ Y
13: return ∑y∈Y Iy(τ)∇xF(x, y)
14: end function
15:
16: function SmoothTau(x, u)
17: B = {F(x, y)|y ∈ Y} ∪ {F(x, y) + u|y ∈ Y}
18: Sort B in ascending order, obtaining B = {b1...b|B|}.
19: i∗ = min{i = 1...|B| : g(bi) > αs}
20: A← {y ∈ Y : bi∗−1 < F(x, y) < bi∗}
21: C ← {y ∈ Y : F(x, y) ≤ bi∗−1}
22: Return the τ which solves the linear equation

∑
y∈A

F(x, y)− τ

u
+ |C| = αs

23: end function

scenarios y such that F(x, y) ≤ τ.

Before describing the optimization algorithm more formally, we deal with the challenge

that the expectation in Problem 6.1 cannot generally be evaluated in closed form. We

replace the expectation with the average of a set of sampled scenarios. Suppose that

we draw a set of samples y1...ys i.i.d from D. Call the set of samples Y . Then we can

estimate E
[
[τ − F(x, y)]+

]
≈ 1

s ∑y∈Y [τ − F(x, y)]+. With sufficiently many samples, this

approximation will be accurate to any desired level of accuracy:

Lemma 10. Take s = O
(

nM2

ε2 log 1
δ log L1

ε

)
samples and let ĈVaRα be the empirical CVaR on the

samples. Then, |CVaRα(x)− ĈVaRα(x)| ≤ ε
3 holds for all x ∈ P with probability at least 1− δ.
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The proof is in the supplement. As a minor technicality, we assume that F(x, yi) takes

a distinct value for each x and yi ∈ Y so that an exact α-quantile exists. This is without

loss of generality since we can always add an arbitrarily small “tie breaker" value ri, using

F(x, yi) + ri instead.

We can now formally introduce RASCAL (Algorithm 10). RASCAL maximizes the

objective H(x, τ) = τ − 1
αs ∑y∈Y [τ − F(x, y)]+. Maximizing H is equivalent to maximizing

the sampled CVaR. RASCAL is a coordinate ascend style algorithm. Each iteration first

makes a Frank-Wolfe style update to x (lines 4-6). This step assumes access to a linear

optimization oracle LO which maximizes a given linear function over P . RASCAL then

sets τ to its optimal value given the current x (line 7). This approach is motivated by the

unique properties of H. It can be shown that H is jointly up-concave in the variable (x, τ).

However, H is not monotone in τ. Indeed, H is decreasing in τ for τ > VaRα(x). The

Frank-Wolfe algorithm relies crucially on monotonicity; nonmonotonicity is much more

difficult to handle.

Instead, we exploit a unique form of structure in H. Specifically, H is monotone in x, but

only up-concave (not fully concave). Conversely, while H is nonmonotone in τ, we can easily

solve the one-dimensional problem maxτ∈[0,M] H(x, τ) for any fixed x (we explain how later).

Our approach makes use of both properties: the Frank-Wolfe update leverages monotone

up-concavity in x, while the update to τ leverages easy solvability of the one-dimensional

subproblem.

In order to make this approach work, two ingredients are necessary. First, we need access

to the gradient of H in order to implement the Frank-Wolfe update for x. Unfortunately, H is

not even differentiable everywhere. We instead present a smoothed estimator SmoothGrad

which restores differentiability at the cost of introducing a controlled amount of bias. Second,

we need to solve the one-dimensional problem of finding the optimal value of τ. We in

fact introduce a subroutine SmoothTau which solves a smoothed version of the optimal τ

problem.

Smoothed gradient: We now calculate the gradient of the objective with respect to x,
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∇xH(x, τ). Essentially, H counts the value of all scenarios y for which F(x, y) ≤ τ. If

F(x, y) 6= τ ∀y ∈ Y then

∇xH(x, τ) =
1
αs ∑

y∈Y :F(x,y)≤τ

∇xF(x, y).

Unfortunately, if there is a y ∈ Y such that F(x, y) = τ, then H may not be differentiable

at x. To see this, consider the directional derivatives from two different directions. From a

nonpositive direction, F(x, y) is always below τ and hence will count towards the gradient.

From a positive direction, F(x, y) may lie above τ in which case its contribution will be zero.

Frank-Wolfe algorithms require differentiability (in fact, they require a Lipschitz gradient).

This is not a minor technical point: if the gradient can radically change over small regions,

then gradient-based updates may prove fruitless. Thus, RASCAL uses a smoothed gradient

estimate over the region from τ to τ + u for some small u > 0:

SmoothGrad(x, τ) =
1
u

∫ u

z=0
∇xH(x, τ + z)dz

The intuition is that we average over a small window of τ values so that the contribution

of a given scenario to the gradient does not suddenly drop to 0 if x increases slightly. Note

that as we have sampled a finite set of s scenarios, the set of points at which H is not

differentiable has measure 0. Hence, the integral exists. We now show how to exactly

evaluate the integral (see Algorithm 1, lines 11-14 for pseudocode). We have

1
u

∫ u

z=0
∇xH(x, τ + z)dz

=
1
u

∫ u

z=0
∑

y∈Y
1 [F(x, y) ≤ τ + z]∇xF(x, y)dz

= ∑
y∈Y
∇xF(x, y)

∫ u

z=0

1
u

1 [F(x, y) ≤ τ + z] dz

where 1[·] is the indicator function. Now value of the inner integral is equivalent
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to max(min( F(x,y)−τ
u , 1), 0). Call this value Iy(τ). By the above, SmoothGrad(x, τ) =

∑y∈Y Iy(τ)∇xF(x, y). This can be computed in time O(s(T1 + T2)), where T1 is the time to

evaluate F and T2 is the time to differentiate it.

Finding the optimal τ: The update SmoothTau sets τ to its optimal value over a smoothed

window of size u (in order to match SmoothGrad). Specifically, we find the τ minimizing

1
u

∫ u
z=0 H(x, τ)dz. Recall that for the unsmoothed H, the optimal setting for τ is VaRα(x),

i.e., the value such that F takes value at most τ in an α-fraction of scenarios. An analogous

property holds for the smoothed version:

Lemma 11. Define g(τ) = ∑y∈Y Iy(τ). (a) τ maximizes 1
u

∫ u
z=0 H(x, τ)dz if g(τ) = αs. (b) g is

piecewise linear and monotone decreasing.

In Lemma 11(a), the condition g(τ) = αs expresses that an α-fraction of the scenarios

weighted by Iy(τ) should have F(x, y) ≤ τ. The key property for efficiently finding the τ

which satisfies this condition is given in Lemma 11(b): g is piecewise linear and monotone

decreasing in τ. This follows since it is the sum of functions which share these properties

(the Iy). SmoothTau (Algorithm 1, lines 16-23) uses these properties as follows. The

breakpoints of g are F(x, y) and F(x, y) + u for each y ∈ Y (line 17). Let these breakpoints

B = {b1...b2s} be sorted in ascending order. We can find the τ such that g(τ) = αs by first

finding the interval such that g(bi) ≤ αs ≤ g(bi+1) (line 19). Within this interval, g is linear

and hence we can solve exactly for the desired point (lines 20-22). This process takes time

O(sT1).

6.5 Theoretical analysis

We now prove that by taking appropriate choices for the smoothing parameter u and the

number of steps K, RASCAL efficiently obtains a provably approximate solution. Our main

theoretical result is as follows:

Theorem 12. For any ε > 0, by taking u = ε
3(1+ 1

α )
, RASCAL outputs a solution x ∈ P satisfying

CVaRα(x) ≥ (1− 1/e)OPT − ε with probability at least 1− δ. There are K = O
(

L2d2

αε + L1Gd2

α2ε2

)
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iterations, requiring O (sK) total evaluations of F, O (sK) evaluations of ∇F, and K calls to LO.

The rest of this section is devoted to proving Theorem 28. We start out by introducing a

surrogate objective that we consider for the sake of analysis. Let

H̃(x, τ) =
1
u

∫ u

z=0
H(x, τ + z)dz.

This is the smoothed version of the objective, which SmoothGrad computes the gradient

for. Let τ(x) = maxτ H̃(x, τ) be the optimal setting for τ under x. Note that this is with

respect to the smoothed objective H̃, so τ(x) is not necessarily VaRα(x). We first show that

H and H̃ are close:

Lemma 12. |H̃(x, τ)− H(x, τ)| ≤ u(1+ 1
α )

2 ∀x, τ

The main idea is to show that H is Lipschitz with respect to τ, so we do not change the

value of the function too much by changing τ slightly. This lemma essentially bounds the

bias introduced by SmoothGrad.

Now we turn to the main step: showing that the coordinate ascent strategy makes

an appropriate amount of progress towards the optimum at each iteration. Note that

at the end of each iteration k, RASCAL sets τk ← τ(xk). This is because SmoothTau

exactly computes the optimal setting for τ with respect to the smoothed objective H̃. Let

x̃∗ = maxx∈P H̃(x, τ(x)) be the point achieving the optimal value of H̃. Since RASCAL

always sets τ to its optimal value in SmoothTau, the gap from optimality at the end of

iteration k is exactly

∆k := H̃(x̃∗, τ(x̃∗))− H̃(xk, τ(xk))

Our aim is to show that the gap ∆k decreases by a factor of (1− γk) at each iteration (up

to a small amount of additive loss). We start out by providing an upper bound on ∆k in

terms of the current gradient.
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Lemma 13. At each iteration k = 1...K,

H̃(x̃∗, τ(x̃∗))−H̃(xk, τ(xk))

≤ max
v∈P
〈∇xH̃(xk, τ(xk)), v〉.

The proof uses the underlying up-concavity of F combined with the concavity-preserving

properties of CVaR. The intuition is that any concave function is upper bounded by its

linearization at a given point (though the bound is weaker than for concave functions [LJJ15]

because F is only up-concave). Lemma 37 gives us a benchmark to track progress: it suffices

to show that the improvement in iteration k is at least γk maxv∈P 〈∇xH̃(xk, τ(xk)), vk〉 since

this implies that we make up at least a γk fraction of the current gap from optimality.

We now express the actual improvement that is made. At iteration k, the Frank-Wolfe

update moves from xk−1 to xk−1 + γkvk. Integrating over the transition between these two

points gives

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1)) = (6.2)∫ 1

ξ=0
〈∇xH̃(xk−1 + ξγkv, τ(xk−1 + ξγkv)), γkv〉dξ.

What we would like is for the gradient to stay relatively constant as we move from xk−1

to xk−1 + γkvk. This is because we chose vk to lie in the direction of ∇xH̃ at the starting

point xk−1. If the gradient changes very sharply along the way, then we may not not actually

improve the objective value very much.

There are two obstacles to showing that the gradient is smooth enough. The first is that

the value of τ in Equation 6.2 may change with ξ. We can deal with this as follows. Note

that that since vk is nonnegative, xk−1 + ξγkvk � xk−1 holds for all ξ ∈ [0, 1]. It is easy to

see that τ(x) is monotone increasing in x. Thus, τ(xk−1 + ξγkv) ≥ τ(xk). By looking at the

expression for ∇xH̃(x, τ), we can see if that if we increase the value of τ, then the gradient

can only increase because more scenarios can contribute. Formally,
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Lemma 14. If x2 � x1, ∇xH̃(x2, τ(x2)) � ∇xH̃(x2, τ(x1)).

Applying Lemma 38 to Equation 6.2 gives

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1))

≥
∫ 1

ξ=0
〈∇xH̃(xk−1 + ξγkv, τ(xk−1)), γkv〉dξ

The second obstacle is that ∇xH̃ might change sharply as we vary x from xk−1 to

xk−1 + γkvk. However, this is exactly what SmoothGrad is designed to avoid. Formally, the

gradient of H̃ is Lipschitz:

Lemma 15. If ∀y ∈ Y , F(·, y) is L1-Lipschitz and ∇xF(·, y) is L2 Lipschitz with ||∇xF||2 ≤ G,

then ∇xH̃ is 1
α

(
L2 +

L1G
u

)
−Lipschitz.

This gives us the tools to finish the proof. Let C = 1
α

(
L2 +

L1G
u

)
be the Lipschitz constant

of ∇xH̃. The Cauchy-Shwartz inequality and Lemma 39 yield

〈∇xH̃(xk−1 + ξγkv, τ(xk−1)), v〉

≥ 〈∇xH̃(xk−1, τ(xk−1)), v〉 − ξγkC||v||22

and hence

H̃(xk, τ(xk))− H̃(xk−1, τ(xk−1))

≥ γk

∫ 1

0
〈∇xH̃(xk−1, τ(xk−1)), v〉 − ξγkC||v||22dξ

= γk〈∇xH̃(xk−1, τ(xk−1)), v〉 − γ2
kC||v||22

2

≥ γk∆k−1 − γ2
kCd2

2

and by rearranging we obtain

∆k ≤ (1− γk)∆k−1 − γ2
kCd2

2
.
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This is exactly what we wanted to show: the gap shrinks by a factor (1− γk) each

iteration, up to a small amount of additive loss. From here, the proof proceeds by fairly

standard arguments which may be found in the supplement.

6.6 Discrete portfolio optimization

We may also want to optimize the CVaR of a submodular set function, as opposed to the

continuous functions that we have dealt with so far. We study the portfolio optimization

problem [OY17] where the decision maker may select any distribution over feasible sets.

Equivalently, they select a decision which is a convex combination of feasible decisions but

which is not guaranteed to lie in the original feasible set itself [CLSS17]. This is a natural

setting for CVaR optimization because the decision maker essentially hedges their bets

between multiple options.

Formally, we are given a collection of submodular set functions f (·, y) on a ground

set X, where y is a random variable. There is a collection of feasible sets I . For instance,

I could be all size-k subsets. In general, our algorithm works when I is any matroid.

The algorithm selects a distribution q over the sets in I . The objective is to maximize

CVaRα (∑S∈I qS f (S, y)).

We provide a black-box reduction from this problem to the continuous submodular CVaR

optimization problem considered earlier. Since RASCAL solves the continuous problem, we

immediately obtain efficient algorithms for a range of portfolio problems. Formally,

Theorem 13. Given access to an α-approximation algorithm for the continuous CVaR problem, there

is an algorithm which obtains value at least αOPT − ε for the discrete portfolio CVaR problem.

A proof is deferred to the supplement. The main idea is to translate from the discrete to

continuous settings via the multilinear extension [CCPV11]. The multilinear extension F

of a submodular set function f is a continuous function defined on the hypercube [0, 1]|X|

which agrees with f at the vertices. We apply the promised continuous CVaR algorithm

to the multilinear extensions F(·, y) and then use known rounding techniques [CVZ10] to
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Figure 6.1: Results for the continuous time independent cascade model. (a) netscience as B varies (b) euroroad
as B varies (d) histogram of values for netscience with B = 0.1n. (d) Watts-Strogatz networks as n varies

convert the fractional solution to a distribution over integral points which preserves the

fractional solution’s CVaR value. However, some additional technical steps are needed to

make this strategy work (e.g., we need to maintain multiple copies of the decision variables

to get the optimal approximation ratio).

We note that this result strengthens that of Ohsaka and Yoshida [OY17] in two respects.

First, their result applies only to influence maximization, while ours applies to any submod-

ular function. Second, they obtain the additive approximation OPT − 1
e when the objective

values are rescaled by n (the total number of nodes in the graph for influence maximization)

to the interval [0, 1]. Hence, their bound does not apply when OPT ≤ 1
e n, which is very

possible since CVaR counts worst-case outcomes. We have only an arbitrarily small ε of

additive loss, which allows for stronger guarantees when OPT is small.
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6.7 Experiments

We show experimental results for the sensor resource allocation problem, where the goal is

to use a limited sensing budget to quickly detect a contagion spreading through a network

[LKG+07, SY15, BMBK17]. We are given a graph G = (V, E) with |V| = n. A contagion

starts at a random node y and spreads over time according to a given stochastic process.

Let tv be the time at which the contagion reaches each node v. tv is a random variable

which depends on both the source node y and the stochastic contagion process. The vector t

collects tv for all v ∈ V. We assume that tv < ∞ ∀v ∈ V (every node is eventually reached).

If this does not hold, we can cut the process off after some large time horizon. Let t∞ be the

maximum possible value of tv.

The decision maker has a budget B (e.g., energy) to spend on sensing resources. xv

represents the amount of energy allocated to the sensor at node v. When contagion reaches

v at time tv, the sensor detects with probability 1− (1− p)xv and otherwise fails. Essentially,

investing an extra unit of energy in sensor v buys an extra chance to detect the contagion with

probability p. Fix a vector of times t, and order the nodes v1...vn so that tv1 ≤ tv2 ≤ ... ≤ tvn .

The objective F for source y is expected amount of detection time that is saved by the sensor

placements:

F(x, t) = t∞ −
n

∑
i=1

tvi (1− (1− p)xi)∏
j<i

(1− p)xj

where the summation counts the probability that sensor i succeeds but all j < i fail. Is

is known that F is DR-submodular [BMBK17]. Previous work maximizes Et [F(x, t)], the

expected utility over the random source node and diffusion process. Here, we consider

instead CVaRα(x), where the scenarios are all possible time vectors t. Essentially, we want to

perform well when the contagion starts in hard to detect portions of the network or spreads

in an unlikely way. We take the CVaR with respect to t but not the success or failure of the

sensors because no algorithm can successfully detect contagion when almost all sensors fail

and the source and diffusion pattern are worst-case.
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Domains: We consider two sensing domains. In both, the source node is uniformly random.

First, contagion spreading according to the continuous time independent cascade model

(CTIC). This models applications like detecting news or a disease in a social network. The

CTIC is variant of the independent cascade model proposed by Gomez-Rodriguez et al.

[GRLK12] which better reflects the temporal dynamics of real-world social processes. Each

edge (u, v) has propagation time ρu,v drawn from an exponential distribution with mean

λ. The contagion starts at y (ty = 0). Letting δ(v) be v’s neighbors, tv = minu∈δ(v) tu + ρu,v.

That is, tv is the first time contagion spreads from a neighbor to v.

We show experiments on several networks. First, netscience2: a collaboration network

of network science researchers with 1461 nodes. Second, euroroad: a network of European

cities and roads between them, with 1,174 nodes. Third, synthetic Watts-Strogatz networks

(parameters k = 2, p = 0.1). These allow us to test our algorithm on a similar graphs as n

grows. For all networks, λ = 5, p = 0.01, and we simulate 1000 scenarios (random source

nodes and propagation times).

Second, we consider detecting contamination in a water network via the Battle of Water

Sensor Networks (BWSN). BWSM [OUS+08] simulates the spread of contamination through

a 126-node water network consisting of junctions, tanks, pumps, and the links between them.

The network is a real water distribution network from an anonymous location, and the t

values are provided by EPANET, a highly realistic water distribution simulator designed by

the U.S. Environmental Protection Agency. We use p = 0.001 and simulate 1000 random

scenarios (source node and t values).

Baselines: No previous work directly addresses our setting. We consider two competitive

baselines. First, FW, which uses the Frank-Wolfe algorithm of Bian et al. [BMBK17] to

maximize the expected reward. Maximizing expected value is default approach to decision

making under uncertainty. Second, degree, a heuristic for producing risk-averse solutions.

Specifically, degree allocates one unit of budget to each of the B nodes with highest degree.

This disperses the budget throughout the network, hedging against unlikely outcomes.

2http://www-personal.umich.edu/ mejn/netdata/
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Results for CTIC: Figure 6.1 shows results under the CTIC. Figures 6.1(a) and 6.1(b) show

the CVaR of each algorithm on the netscience and euroroad networks as the budget B varies

on the x axis. RASCAL substantially outperforms both FW and Degree. This indicates that

maximizing expected value is not a sufficient proxy for risk-aversion under uncertainty.

In fact, FW obtains zero value for many values of B, indicating that its sensor selection is

useless in the 10% worst cases. Degree often performs better than FW, indicating some

benefit to heuristically hedging against possible contagion sources. However, RASCAL’s

principled optimization still results in much higher performance. Figure 6.1(c) shows a

histogram of each algorithm’s value across the different scenarios on netscience. RASCAL’s

reward distribution is tightly concentrated, which is desirable from the perspective of risk

aversion. By contrast, FW and degree have more bimodal distributions, with the potential

for both very low and high reward. Lastly, Figure 6.1(d) shows the CVaR obtained by each

algorithm for Watts-Strogatz networks as the network size n grows on the x axis. RASCAL

again obtains much higher value across the board. RASCAL scales easily to 10,000 nodes,

running in under 1 minute.

Results for BWSN: We now examine our second domain, water network sensor manage-

ment. Figure 6.2 shows the CVaR obtained by each algorithm. Figure 6.2(a) shows α on the

x axis, varying the decision maker’s degree of risk aversion. Throughout, B = 10. RASCAL

substantially outperforms FW and degree until α = 0.6, at which point FW becomes com-

petitive. However, for α ≤ 0.4, both FW and degree obtain zero value. This indicates that

even when the decision maker is not severely risk averse (e.g., preferring to focus on the

worst 50% of scenarios), they can substantially benefit from using our principled approach

to optimizing CVaR. It is natural to ask whether the baselines are competitive when there

are more resources available, allowing them to cover a larger portion of the network. Figure

6.2(b) shows the results as the budget B is varied on the x axis with α = 0.1. FW and

degree still obtain a CVaR of zero even when the budget is tripled to B = 30. By contrast,

RASCAL’s value steadily grows as it makes productive use of the additional resources.

Lastly, Figure 6.3 shows an example of the allocation produced by each algorithm for
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B = 10, α = 0.1. RASCAL disperses its resources throughout the network. It places some

resources on central nodes, but also spends a portion of the budget on outlying parts of the

network where contagions will not be detected by centrally placed sensors. On the other

hand, FW concentrates is entire budget on one central node. Degree, by design, disperses its

budget more widely. However, it spends the budget largely on central nodes, instead of

balancing between central and outlying nodes like RASCAL. We conclude that RASCAL

successfully balances different scenarios to find risk-averse solutions.
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Chapter 7

Fairness in influence maximization

Influence maximization in social networks is a well-studied problem with applications in a

broad range of domains. Consider, for example, a group of at-risk youth; outreach programs

try to provide as many people as possible with useful information (e.g., HIV safety, or

available health services). Since resources (e.g., social workers) are limited, it is not possible

to personally reach every at-risk individual. It is thus important to target key community

figures who are likely to spread vital information to others. Formally, individuals are nodes

V in a social network, and we would like to influence or activate as many of them as possible.

This can be done by initially seeding k nodes (where k� |V|). The seed nodes activate their

neighbors with some probability, who activate their neighbors and so forth. Our goal is

to identify k seeds such that the maximal number of nodes is activated. This is the classic

influence maximization problem [KKT03], that has received much attention in the literature.

In recent years, the influence maximization framework has seen application to many

social problems, such as HIV prevention for homeless youth [YWR+18, WOVH+18], public

health awareness [VP07], financial inclusion [BCDJ13], and more. Frequently, small and

marginalized groups within a larger community are those who benefit the most from

attention and assistance. It is important, then, to ensure that the allocation of resources

reflects and respects the diverse composition of our communities, and that each group

receives a fair allocation of the community’s resources. For instance, in the HIV prevention
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domain we may wish to ensure that members of racial minorities or of LGBTQ identity are

not disproportionately excluded; this is where our work comes in.

Our Contributions

This chapter introduces the problem of fair resource allocation in influence maximization.

Our first contribution is to propose fairness concepts for influence maximization. We start

with a maximin concept inspired by the legal notion of disparate impact; formally it requires

us to maximize the minimum fraction of nodes within each group that are influenced.

While intuitive and well-motivated, this definition suffers from shortcomings that lead us to

introduce a second concept, diversity constraints. Roughly, diversity constraints guarantee

that every group receives influence commensurate with its “demand”, i.e., what it could

have generated on its own, based on a number of seeds proportional to its size. Here, to

compute a group’s demand, we allow it a number of seeds proportional to its size, but

require that it spreads influence using only nodes in the group. Hence, a small but well

connected group may have a better claim for influence than a large but sparsely connected

group.

Our second contribution is an algorithmic framework for finding solutions that satisfy

either fairness concept. While the classical influence maximization problem is submodular

(and hence easily solved with a greedy algorithm), fairness considerations produce strongly

non-submodular objectives. This renders standard techniques inapplicable. We show

that both fairness concepts can be reduced to multi-objective submodular optimization

problems, which are substantially more complex. Our key algorithmic contribution is a new

method for general multi-objective submodular optimization which has substantially better

approximation guarantee than the current best algorithm [Udw18], and often better runtime

as well. This result may be of independent interest.

Our third contribution is an analytical exploration of the price of group fairness in influence

maximization, i.e., the reduction in social welfare with respect to the unconstrained influence

maximization problem due to imposing a fairness concept. We show that the price of
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diversity can be high in general for both concepts and under a range of settings.

Our fourth contribution is an empirical study on real-world social networks that have been

used for a socially critical application: HIV prevention for homeless youth. Our results show

that standard influence maximization techniques often cause substantial fairness violations

by neglecting small groups. Our proposed algorithm substantially reduces such violations

at relatively small cost to overall utility.

Related Work

[KKT03] introduced influence maximization and proved that since the objective is sub-

modular, greedily selecting nodes gives a
(
1− 1

e

)
-optimal solution. There has since been

substantial interest among the AI community both in developing more scalable algorithms

(see [LFWT18] for a recent survey) , as well as in addressing the challenges of deployment

in public health settings [YCXJ+16, WIRT18]. Recently, such algorithms have been used in

real-world pilot tests for HIV prevention amongst homeless youth [YWR+18, WOVH+18],

driving home the need to consider fairness as influence maximization is applied in socially

sensitive domains. To our knowledge, no previous work considers fairness specifically for

influence maximization. Some literature exists on targeted influence maximization problems

[PNR15, WPS18, CLFC19] where the objective is to reach a specific set of nodes and not

others; by contrast, our goal is to ensure that every group receives a fair amount of influence

spread. The techniques we introduce to optimize fairness metrics are related to research on

multi-objective submodular maximization (outside the context of fairness), and we improve

existing theoretical guarantees for this general problem [CVZ10, Udw18].

Outside of influence maximization, the general idea of diversity as an optimization

constraint has received considerable attention in recent years; it has been studied in multi-

winner elections (see [BFI+18, FSST17] for an overview), resource allocation [BCH+18], and

matching problems [ADF17, HHK+17]. We note that some of the above works (e.g. [ADF17]

and [SCFD17]) use a submodular objective function as a means of achieving diversity;

interestingly, while the classic influence maximization target function is submodular, it
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is no longer so under diversity constraints. Group fairness has been studied extensively

in the voting theory literature, where the objective is to identify a committee of k candi-

dates that will satisfy subsets of voters (see a comprehensive overview in [FSST17]). There

have also been several works on group fairness in fair division, defining notions of group

envy-freeness [CFSV19, FMS18, SHS18, TLH+11], and a group maximin share guarantee

[BBKN19, Suk18]. One line of work in operations research uses mixed-integer programming

to enforce that different groups receive the equal utility (or at least that each group’s utility

satisfies some lower bound) [BFT13, AVW+18]. This manner of defining fairness is relatively

close to our own; e.g., our diversity constraints give one way of instantiating what this lower

bound should be. Computationally, we introduce efficient algorithms specifically for the

submodular optimization instead of using mixed-integer programming.

7.1 Model

Agents are embedded in a social network G = (V, E). An edge (i, j) ∈ E represents the

ability for agent vi to influence or activate vj. G may be undirected or directed.

Diversity

Each agent in our network may identify with one or more groups within the larger popu-

lation. These represent different ethnicities, genders, sexual orientations, or other groups

for which fair treatment is important. Our goal is to maximize influence in a way such

that each group receives at least a “fair” share of influence (more on this below). Let us

designate these groups as C = {C1, . . . Cm}. Each group Ci represents a non-empty subset

of V, ∅ 6= Ci ⊆ V. Each agent must belong to at least one group, but may belong to

multiple groups; i.e. C1 ∪ C2 ∪ . . . Cm = V. In particular, this allows for the expression of

intersectionality, where an individual may be part of several minority groups.
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Influence Maximization

We model influence using the independent cascade model [KKT03], the most common model

in the literature. All nodes begin in the inactive state. The decision maker then selects k

seed nodes to activate. Each node that is activated makes one attempt to activate each of

its inactive neighbors; each attempt succeeds independently with probability p (all of our

results also hold for nonuniform probabilities). Newly activated nodes attempt to activate

their neighbors and so on, with the process terminating once there are no new activations.

We define the influence of nodes A ⊆ V, denoted IG(A), as the expected number of

nodes activated by seeding A. Of these, let IG,Ci(A) be the expected number of activated

vertices from Ci. Traditional influence maximization seeks a set A, |A| ≤ k, maximizing

IG(A). Using a slight abuse of notation, let IG(k) be the maximum influence that can be

achieved by selected k seed nodes. That is, IG(k) = max|A|=k IG(A). Analogously, we define

IG,Ci(k) as the maximum expected number of vertices from Ci that can be activated by k

seeds. We now propose two means of capturing group fairness in influence maximization.

Maximin Fairness

Maximin Fairness captures the straightforward goal of improving the conditions for the least

well-off groups. That is, we want to maximize the minimum influence received by any of

the groups, as proportional to their population. This leads to the following utility function

based on seed nodes A:

UMaximin(A) = min
i

IG,Ci(A)

|Ci|
Subject to this maximin constraint, we seek to maximize overall influence. Thus, we

define IMaximin
G = IG(B) with B = arg maxA⊆V,|A|=k UMaximin(A). That is, IMaximin

G is the

expected number of nodes activated by a seed configuration that maximizes the minimum

proportional influence received by any group. This corresponds to the legal concept of

disparate impact, which roughly states that a group has been unfairly treated if their “success

rate" under a policy is substantially worse than other groups (see [BS16] for an overview).
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Therefore, maximin fairness may be significant to governmental or community organizations

which are constrained to avoid this form of disparity. However, optimizing for equality of

outcomes may be undesirable when some groups are simply much better suited than others

to a network intervention. For instance, if one group is very poorly connected, maximin

fairness would require that large number of nodes be spent trying to reach this group, even

though additional seeds have relatively small impact.

Diversity Constraints

We now propose an alternate fairness concept by extending the notion of individual ratio-

nality to Group Rationality. The key idea is that no group should be better off by leaving the

(influence maximization) game with their proportional allocation of resources and allocating

them internally. For each group Ci, let ki = dk|Ci|/|V|e be the number of seeds that would

be fairly allocated to the group Ci based on the group’s size within the larger population,

rounded up to remove any doubt that this group receives a fair share. ki is the fair allocation

of seeds to the group.

Let G[Ci] be the subgraph induced from G by the nodes Ci. This represents the network

formed by group Ci if they were to separate from the original network. Now, we define

the group rational influence that each group Ci can expect to receive as the number of nodes

they expect to activate if they left the network, with their fair allocation of ki seeds. We

denote this group rational influence for Ci as IG[Ci ](ki). Then, we devise a set of diversity

constraints that any group rational seeding configuration A with k seeds must satisfy:

IG,Ci(A) ≥ IG[Ci ](ki), ∀i. That is, the influence received by each group is at least equal to

what each group may accomplish on its own when given its fair share of ki seed nodes.

The diversity constraint objective function is to maximize the expected number of nodes

activated, subject to the above diversity constraint. The utility for selecting seed nodes A is:
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URational(A) =


IG(A), if IG,Ci(A) ≥ IG[Ci ](ki), ∀i.

0, otherwise.

The maximum expected influence obtained via a group rational seeding configuration

A is called the rational influence IRational
G = IG(B), where B = arg maxA⊆V,|A|=k URational(A).

Note that since even the standard influence maximization problem is already NP-hard

and must be approximated, our computational guarantees will relax the above constraint,

requiring that each group receive influence within some factor α of IG[Ci ](ki).

Price of Fairness

To measure the cost of ensuring a fair outcome for the diverse population, we will measure

the Price of Fairness, the ratio of optimal influence to the best achievable influence under our

two fairness criteria. Here optimal influence IOPT
G = IG(k), which is the maximum amount

of expected influence that can be obtained using any choice of k seed nodes. We omit the

subscript where the context is clear.

PoFRational =
IOPT

IRational PoFMaximin =
IOPT

IMaximin

7.2 Optimization

The standard approach to influence maximization is based on submodularity. Formally, a

set function f on ground set V is submodular if for every A ⊆ B ⊆ V and x ∈ V \ B,

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B). This captures the intuition that additional seeds

provide diminishing returns. However, both of our fairness concepts are easily shown to

violate this property (proofs are deferred to the appendix):

Theorem 14. UMaximin and URational are not submodular.

We remark that each individual function IG,Ci , i.e., the number of nodes in group i who
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are reached, is submodular. However, this property does not hold for the combined objectives

UMaximin and URational. Hence, we cannot apply the greedy heuristic to group-fair influence

maximization. Instead, we now show that optimizing either utility function reduces to

multiobjective submodular maximization, a more general problem defined as follows. The input

to the problem is a set of monotone submodular functions f1... fm and corresponding target

values W1...Wm. We assume that the fi are normalized ( fi(∅) ≥ 0). The multiobjective

submodular maximization problem is to find a set S satisfying |S| ≤ k with fi(S) ≥Wi for

all i, assuming that such an S exists.

7.2.1 Reduction to Multiobjective Submodular Maximization

We now show that each of the fairness-aware influence maximization objectives can be

reduced to solving a small number of instances of multiobjective submodular maximization

with appropriately chosen functions fi and targets Wi. Our reductions leverage the property

that the underlying influence functions IG,Ci are submodular even though the group-fair

objectives are not. We start with UMaximin. Here, we define fi =
IG,Ci
|Ci | to be group i’s influence

spread normalized by the size of the group. All of the target values Wi will be equal, i.e.,

W1 = W2 = ...Wm = W. Assume that we have a subroutine for multiobjective submodular

maximization. If the multiobjective problem is feasible for a given value of W, then the

subroutine outputs a set S satisfying UMaximin(S) ≥W. Hence, we simply binary search for

the highest value of W for which the multiobjective problem remains feasible.

For URational, we let fi = IG,Ci and set the target Wi = IG[Ci ](ki). This represent the

constraint that group i must receive at least their group-rational share of utility. We then add

another objective function ftotal = IG representing the combined utility and binary search

for the highest value Wtotal such that the targets W1...Wm, Wtotal are feasible. This represents

the largest achievable total utility, subject to diversity constraints. Having reduced both

fairness concepts to multiobjective submodular maximization, we turn to algorithms for this

core problem. We present an algorithm with substantially improved theoretical guarantees

for the general multiobjective problem, and then show how our algorithm can be applied to
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fair influence maximization.

7.2.2 Previous Techniques

The multiobjective submodular problem was introduced by Chekuri et al. [CVZ10], who

gave an algorithm which guarantees fi ≥ (1− 1
e )Wi for all i provided that the number

of objectives m is smaller than the budget k (when m = Ω(k), the problem is provably

inapproximable [KMGG08]). Unfortunately, this algorithm is of mostly theoretical interest

since it runs in time O(n8). Udwani [Udw18] recently introduced a practically efficient

algorithm; however it obtains an asymptotic (1− 1
e )

2-approximation instead of the optimal(
1− 1

e

)
. We remedy this gap by providing a practical algorithm obtaining an asymptotic(

1− 1
e

)
-approximation (Algorithm 11). Its runtime is comparable to, and under many

conditions faster than, the algorithm of [Udw18].

Previous algorithms [CVZ10, Udw18] start from a common template in submodular

optimization, which we also build on. The main idea is to relax the discrete problem to a

continuous space. For a given submodular function f , its multilinear extension F is defined

on n-dimensional vectors x where 0 ≤ xj ≤ 1 for all j ∈ V. xj represents the probability

that item j is included in the set. Formally, let S ∼ x denote a set which includes each

j independently with probability xj. Then, we define F(x) = ES∼x[ f (S)], which can be

evaluated using random samples.

7.2.3 Algorithm Overview

The main challenge is to solve the continuous optimization problem, which is where our

technical contribution lies. Algorithm 11 describes the high-level procedure, which runs our

continuous optimization subroutine (line 2) and then rounds the output to a discrete set

(line 3). Line 1, which ensures that all items with value above a threshold τ are included in

the solution, is a technical detail needed to ensure the rounding succeeds. The rounding

process captured in lines 1 and 3 is fairly standard and used by both previous algorithms

[CVZ10, Udw18]. Our main novelty lies in an improved algorithm for the continuous
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problem, MultiFW.

Algorithm 11 Multiobjective Optimization(γ, τ, T, T′, η)

1: S1 = {j : fi({j}) ≥ τ for some i}
2: x =MultiFW(k− |S1|, {γ (Wi − fi(S))}m

i=1)
3: S2 =SwapRound(xint) //see [CVZ10]
4: return S1 ∪ S2

Algorithm 12 Multiobjective Frank-Wolfe(k, {Wi})
1: x0 = 0
2: for t = 1...T do
3: vt = S-SP-MD(x, {i : Wi − Fi(xt−1) ≥ ε})
4: xt = xt−1 + 1

T vt

5: end for
6: return ApproxDecomposition(xT) //see [MLVW17]
7: function S-SP-MD(x, I)
8: Initialize v s.t. ||v||1 = k and y ∈ ∆(I) arbitrarily
9: for ` = 1...T′ do

10: Sample i ∼ y; set ∇̂v = 1
Wi−Fi(x)Ai

grad(x)

11: Sample j ∼ v; ∇̂y = k · diag
(

1
~W−~F(x)

)
Aj

item(x)

12: y = ye−η∇̂y

||ye−η∇̂y ||1

13: v = k min{veη∇̂
v ,1}

||min{veη∇̂
v ,1}||1

14: end for
15: end function

MultiFW implements a Frank-Wolfe style algorithm to simultaneously optimize the

multilinear extensions F1...Fm of the discrete objectives. The algorithm proceeds over T

iterations. Each iteration first identifies vt, a good feasible point in continuous space

(Algorithm 12, line 3). Then, the current solution xt is updated to add 1
T vt (line 4). Since

each point vt is feasible, xt is a convex combination of feasible points and hence always

remains feasible. The key to the algorithm is a good choice of the direction vt at each

iteration. Roughly, we would like to choose vt in a way that ensures we make progress

towards meeting the target Wi for each Fi. If our current solution quality Fi(xt−1) is very far

from Wi then vt should focus heavily on improving the value of Fi. By contrast, if Fi(xt−1) is

already close to Wi, then vt should focus on improving other objectives instead. This process
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is formally accomplished via a subroutine S-SP-MD which we introduce in the subsection

below.

The output of Algorithm 12 is the final point xT produced after T iterations. There is

one technical detail to take care of, reflected in line 5. Common rounding algorithms for

submodular maximization require not just the fractional point xT, but also a representation

of xT as a convex combination of integral points, i.e., as a combination of binary vectors

representing feasible sets. The rounding algorithm will then merge these binary vectors

together to produce the final output set. Producing this convex combination is the well-

known Caratheodory problem of decomposing a point in a polytope into a combination of

vertices. While the problem can be solved exactly via convex optimization, doing so may

incur unnecessarily high runtime. To reduce the time complexity of the algorithm, we find

the decomposition via an approximate method recently introduced by [MLVW17]. The

details of this method are unimportant (we use it just as a black-box; any method for solving

the Caratheodory problem would suffice). In our theoretical analysis, we show that the loss

in solution quality due to using an approximate decomposition is negligible (formally, an

arbitrarily small ε).

7.2.4 Choosing the Direction

The key challenge is to efficiently find a vt that makes sufficient progress towards every

objective simultaneously. We accomplish this by introducing the subroutine S-SP-MD (lines

6-12), which runs a carefully constructed version of stochastic saddle-point mirror descent

[NJLS09]. We first motivate and formalize the problem that S-SP-MD attempts to solve.

Then, we give some background on mirror descent and explain the steps of the algorithm.

As explained earlier, vt must be chosen so that it makes progress towards those objectives

for which Wi− Fi(xt−1) is large (i.e., we are far from the target). As a first step, we will ignore

all i for which Wi − Fi(xt−1) < ε, since for these objectives the current solution is already

sufficiently good. Let I denote the set of remaining objectives where Wi − Fi(xt−1) ≥ ε. For

each i, let ∇Fi(xt−1) denote the gradient of Fi. We will use the gradients of the functions in
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I to choose vt. Specifically, our goal is to find a feasible v such that

∇Fi(xt−1) · v ≥Wi − Fi(xt−1) ∀i ∈ I . (7.1)

It can be shown that such a v always exists whenever the overall multiobjective problem

is feasible. If we can find this v, the progress we make at each iteration is proportional to

our current gap from the targets, resulting in the desired (1− 1/e)-approximation after

sufficiently many iterations. Note that the LHS of Problem 7.1 is linear in the decision

variable v, while the RHS is constant with respect to v. This implies that we could (in

principle) find a feasible v via linear programming. Naively however, this approach would

entail O(n3) runtime per iteration.

Our first step towards an efficient solution is to convert Problem 7.1 into a single maxmin

problem. Specifically, we can solve the problem

max
||v||1≤k

min
i∈I
∇Fi(xt−1) · v
Wi − Fi(xt−1)

(7.2)

and it is easy to see that if a solution v has objective value at least 1 for the maxmin

Problem 7.2, then it is also feasible for Problem 7.1. We now make a final reformulation

to obtain a problem amenable to optimization. Specifically, let ∆(I) denote the set of all

distributions over I . We will consider the saddle-point problem

max
||v||1≤k

min
y∈∆(I) ∑

i∈I
yi
∇Fi(xt−1) · v
Wi − Fi(xt−1)

(7.3)

where the min now ranges over all distributions over ∆(I) instead of single elements. It

is easy to see that the solutions of the two problems are equivalent (since the minimizing

distribution will always put probability one on a single element). However, replacing the

discrete min with one over a continuous set allows us to draw on continuous optimization

techniques to obtain an efficient solution, as explained in the next section.
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7.2.5 Stochastic Saddle-Point Method

We employ a method based on stochastic saddle-point mirror descent (S-SP-MD), introduced

by [NJLS09]. Essentially, this algorithm views Problem 7.3 as a game between a max player

and a min player. Both players update their decision variables (v and y respectively) by

using gradient updates based on the objective in Problem 7.3. Intuitively, the min player will

put large weights where the max player is doing badly, forcing the max player to improve v.

The algorithm uses two key ideas to make this process efficient. The first is that, instead

of using standard gradient descent, mirror descent modifies the updates to better exploit

the structure of the feasible set. For our case, this results in the exponentiated gradient

updates given in lines 11-12 of Algorithm 12. Essentially, each player multiplies their current

solution by e−η∇, where ∇ is that player’s current gradient and η is a learning rate. Then,

they rescale to maintain feasibility.

However, this process assumes that the gradients ∇ are easily available, an assumption

that does not hold in common submodular problems. For instance, for influence maximiza-

tion the gradients depend on the random influence process and cannot be calculated exactly.

Hence, the second key idea uses stochastic methods to efficiently estimate the gradients

(e.g., using simulations of influence spread). Formally, instead of assuming that ∇Fi can be

computed exactly, we will instead make the much weaker assumption that we can obtain an

unbiased estimate of it, i.e., a random vector ∇̂ satisfying E[∇̂] = ∇Fi. Efficient estimates

of this form are known for many submodular problems (e.g., coverage functions or facility

location [KLHK17]), and we show below how to create one for influence maximization.

However, even using stochastic gradients may entail unnecessarily high runtime since we

still have to compute the estimated gradients for every objective i with respect to every

item (node) j. Accordingly, our proposed updates use more restricted oracles that return

stochastic estimates of only a subset of the full gradients. This is a key element of obtaining

near-linear runtime.

Specifically, we assume access to two gradient oracles. First, a stochastic gradient oracle

Ai
grad for each multilinear extension Fi. Given a point x, Ai

grad(x) satisfies E[Ai
grad] =
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∇xFi(x). Second, a stochastic gradient oracle Aj
item corresponding to each item j ∈ [n]

(in influence maximization, the items are the potential seed nodes). Aj
item(x) satisfies

E[Aj
item(x)] =

[
∇xj F1(x)...∇xj Fm(x)

]
. We assume that ||Ai

grad(x)||∞, ||Aj
item(x)||∞ ≤ c for

some constant c.

Our algorithm calls Ai
grad and Aj

item for only a single i and j each iteration (instead of

enumerating over all i, j as would be naively required). The results are then scaled so that

they remain unbiased estimates of the true gradients. The process is formally shown in lines

8-9 of Algorithm 12. Line 8 computes gradients with respect to v for the maximizing player,

a process which works as follows. Differentiating Equation 7.2 with respect to v, we obtain

∇v = ∑
i∈I

yi
∇Fi(xt−1)

Wi − Fi(xt−1)

= E
i∼y

[ ∇Fi(xt−1)

Wi − Fi(xt−1)

]
(7.4)

where i ∼ y denotes drawing i at random according to the probability distribution y.

From this expression, we see that an unbiased estimate of Equation 7.4 can be obtained

by first sampling a single i ∼ y, and then calling Ai
grad to obtain an unbiased estimate of

∇Fi(xt−1). We then return 1
Wi−Fi(xt−1)

Ai
grad, which has expectation equal to Equation 7.4.

The reasoning behind the gradients for the min player, calculated in line 9, is analogous: we

sample a single j and return an appropriately scaled call to Aj
item.

7.2.6 Approximation Guarantee

With these techniques in hand, our theoretical analysis shows that S-SP-MD ensures rapid

convergence to an ε-optimal solution for Problem 7.2. This convergence property for the

inner subroutine then, in turn, allows us to show that the overall strategy employed in

Algorithm 11 attains the desired approximation guarantee. Formally, our main theoretical

result is given by the following theorem. Here, b = maxi,j fi({j}) is the maximum value of a

single item.
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Theorem 15. Given a feasible set of target values W1...Wn, Algorithm 11 outputs a set S such that

fi(S) ≥ (1− ε)
(

1− m
k(1+ε′)ε3

) (
1− 1

e

)
Wi − ε with probability at least 1− δ. Asymptotically as

k → ∞, the approximation ratio can be set to approach 1− 1/e so long as m = o(k log3 k). The

algorithm requires O(nm) ε′-accurate value oracle calls, O(m bk2

ε log 1
δ ) ε-accurate value oracle calls,

O
(

bk4c2

ε5 log
(

n + bk
δε

))
calls to Agrad and Aitem, and O

(
nk2b2

ε2 + mk2b
ε + k3b2

ε2

)
additional work.

This says that Algorithm 11 asymptotically converges to a
(
1− 1

e

)
-approximation when

the budget k is larger than the number of objectives m (i.e., the conditions under which the

problem is approximable). All terms in the approximation ratio are identical to Udwani

[Udw18], except that we improve their factor
(
1− 1

e

)2
to
(
1− 1

e

)
. The runtime is also iden-

tical apart from the time to solve the continuous problem (MultiFW vs their corresponding

subroutine). This is difficult to compare since our respective algorithms use different oracles

to access the functions. However, both kinds of oracles can typically be (approximately)

implemented in time O(n). Udwani’s algorithm uses O(n) oracle calls, while our’s requires

O(bk4c2 log n). For large-scale problems, n typically grows much faster than k, b, and c

(all of which are often constants, or near-so). Hence, trading O(n2) runtime for O(n log n)

can represent a substantial improvement. We present a more detailed discussion in the

appendix.

7.2.7 Instantiation for Influence Maximization

To instantiate Algorithm 11 for influence maximization, we just need to supply appropriate

stochastic gradient oracles. To our knowledge, no such oracles were previously known for

influence maximization, which is substantially more complicated than other submodular

problems because of additional randomness in the objective; naive extensions of previous

methods require O(n2) time. We provide efficient O(kn log n) time stochastic gradient

oracles by introducing a randomized method to simultaneously estimate many entries of the

gradient at once. Details may be found in the appendix. The main idea is to use simulations

of the influence process to estimate the marginal contribution that seeding each node would

make towards the objective. Even to produce a noisy estimate, a naive method would
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require two simulations per node: one where the node is chosen as a seed and one where

it is not. Since each simulation takes O(n) runtime this requires O(n2) time overall. Our

proposed method uses only O(k log n) simulations, but shares information across them in

order to simultaneously estimate the marginal contribution made by all n nodes. .

7.3 Price of Fairness

In this section, we show that both definitions for the Price of Fairness can be unbounded;

moreover, allowing nodes to join multiple groups can, counter-intuitively, worsen the PoF.

The proofs in this section show undirected examples demonstrating the worst case. The

results naturally serve as examples in a directed setting.

Theorem 16. As n→ ∞ and p→ 0, there exists a family of graphs such that PoFRational → ∞.

Proof. We construct a graph G with two parts. In Part L, we have s− 1 vertices all disjoint

except for two vertices; label one of these x3. In Part S, we have a star with s + 1 nodes.

Label a leaf node x1 and the central node x2. We define two groups: C1 is comprised of the

s degree-1 vertices of S, and C2 for the remaining s vertices, which includes the vertices of L

and the central vertex x2 of the star. There are k = 2 seeds, and since |C1| = |C2|, they each

have a fair allocation of k1 = k2 = 1 seeds. Since the subgraph induced by C1 is comprised

of isolated vertices, they have a rational allocation of IG[C1](1) = 1. The subgraph induced

by C2 is a collection of isolated vertices and a K2, its rational allocation is IG[C2](1) = 1 + p.

We are interested in two seeding configurations: A = {x1, x3} and B = {x2, x3}. We can

verify that configuration A is fair. The A activates 1+ p nodes in Part L, and 1+ p+(s− 1)p2

in Part S, for a total of IG(A) = 2 + 2p + (s− 1)p2.

Now consider configuration B. C1 receives ps influence, and since p < 2
n = 1

s , C1

does not receive its group rational share of influence. However, we can verify that this

seeding is optimal. Part L receives (1 + p) influence, and Part S receives 1 + ps. Therefore,

IG(B) = 2 + p + ps.

We may then calculate our Price of Fairness:
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PoFRational =
IOPT

G

IRational
G

=
2 + p + ps

2 + 2p + (s− 1)p2

And if we take the limit as n → ∞, s → ∞, PoF → 1/p. Finally, as as p → 0,

PoF → ∞.

The appendix details a similar result for Maximin Fairness:

Theorem 17. As n→ ∞ and p→ 0, there exists a family of graphs such that PoFMaximin → ∞.

Frequently, an individual may identify with multiple groups. Intuitively, we might

expect such multi-group membership to improve the influence received by different groups

and make group-fairness easier to achieve (see the appendix for an example). However, in

the following, we show that this is not always true — giving even a single node membership

in a second group can cause the Price of Fairness to worsen by an arbitrarily large amount.

Theorem 18. Let G be a graph with groups C1 and C2, and G′ with groups C′1 and C′2, where

G′ = G, C′1 = C1 and C′2 is obtained from C2 by the addition of one vertex x1 (x1 ∈ C1, x1 /∈ C2).

There exists a family of such graphs such that lim
n→∞

PoFRational
G′

PoFRational
G

= ∞.

Proof. Consider a graph G with two components: one component K contains 2 vertices joint

by an edge, the other component S is a star with s + 1 vertices (s ≥ 1/p). There are two

groups: C1 contains all degree-1 vertices from S and one vertex from K; C2 contains the

other vertex x1 from K and the central vertex x2 from S. There is one seed (k = 1), and the

fair allocation of seeds to each group is k1 = k2 = 1.

Since the induced subgraphs for both groups comprise only of isolated nodes, the group

rational influence for each group is IG[C1] = IG[C2] = 1. Therefore, the seed set {x2} is both

fair and optimal, giving an expected influence of IG({x2}) = 1 + ps.

Now, let us modify G by letting x1 belong to both communities to obtain G′, and

communities C′1 and C′2. The group rational influence for C′2 remains the same (its members

have not changed) but IG′[C′1]
has increased to 1 + p (by seeding x1). In fact, this forces the

fair allocation to seed x1 instead of x2, for a fair influence of IG′({x1}) = 1 + p.

As n→ ∞, lim
n→∞

PoFRational
G′

PoFRational
G

= lim
s→∞

1+ps
1+p = ∞.
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Figure 7.1: Left: G with Disjoint Groups. Right: G′ with Overlapping Groups.
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Figure 7.2: Average performance on homeless youth social networks (top) and simulated Antelope Valley
networks (bottom).

A slightly weaker result can be obtained for Maximin Fairness where the construction of

the graphs depend on p. The proof is provided in the appendix.

Theorem 19. Let G be a graph with groups C1 and C2, and G′ with groups C′1 and C′2, where G′ = G,

C′1 = C1 and C′2 is obtained from C2 by the addition of one vertex x1 (x1 ∈ C1, x1 /∈ C2). Given

propagation probability p, we may construct a family of such graphs such that lim
n→∞

PoFMaximin
G′

PoFMaximin
G

→ ∞.

7.4 Experimental Results

We now investigate the empirical impact of considering fairness in influence maximization.

We start with experiments on a set of four real-world social networks which have been

previously used for a socially critical application: HIV prevention for homeless youth.

Each network has 60-70 nodes, and represents the real-world social connections between
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Table 7.1: Network characteristics.

Characteristic Net. 1 Net. 2 Net. 3 Net. 4

Density 0.012 0.032 0.022 0.034
Modularity 0.803 0.713 0.604 0.537
Median group size 13.0 9.5 16.0 9.5

a set of homeless youth surveyed in a major US city. Each node in the network is asso-

ciated with demographic information: their birth sex, gender identity, race, and sexual

orientation. The networks can be made available upon request; all code is available at

https://github.com/bwilder0/fair_influmax_code_release. Table 7.1 gives

some aggregate statistics for each network. Each demographic attribute gives a partition

of the network into anywhere from 2 to 6 different groups. For each partition, we com-

pare three algorithms: the standard greedy algorithm for influence maximization, which

maximizes the total expected influence (Greedy), Algorithm 11 used to enforce diversity

constraints (DC), and Algorithm 11 used to find a maximin fair solution (Maximin). We set

the propagation probability to be p = 0.1 and fixed k = 15 seeds (varying these parameters

had little impact). We average over 30 runs of the algorithms on each network (since all of

the algorithms use random simulations of influence propagation), with error bars giving

bootstrapped 95% confidence intervals.

Figure 7.2 (top) shows that the choice of solution concept has a substantial impact on

the results. For the diversity constraints case, we summarize the performance of each

algorithm by the mean percentage violation of the constraints over all groups. For the

maximin case, we directly report the minimum fraction influenced over all groups. We see

that greedy generates substantial unfairness according to either metric: it generates the

highest violations of diversity constraints, and has the smallest minimum fraction influenced.

Greedy actually obtains near-zero maximin value with respect to sexual orientation. This

results from it assigning one seed to a minority group in a single run and zero in others.

DC performs well across the board: it reduces constraint violations by approximately

55-65% while also performing competitively with respect to the maximin metric (even

without explicitly optimizing for it). As expected, the Maximin algorithm generally obtains
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the best maximin value. DC actually attains slightly better maximin value for one attribute

(birthsex); however, the difference is within the confidence intervals and reflects slight

fluctuations in the approximation quality of the algorithms. However, Maximin performs

surprisingly poorly with respect to diversity constraint violations. This indicates that

optimizing exclusively for equal influence spread may force the algorithm to focus on poorly

connected groups which exhibit severe diminishing returns. DC is able to attain almost

as much influence in such groups but is then permitted to focus its remaining budget

for higher impact. Interestingly, the price of fairness is relatively small for both solution

concepts, in the range 1.05-1.15 (though it is higher for maximin than for DC). This indicates

that while standard influence maximization techniques can introduce substantial fairness

violations, mitigating such violations may be substantially less costly in real world networks

than the theoretical worst case would suggest.

Finally, the rightmost plot in the top row of Figure 7.2 explores an example with

overlapping groups. Specifically, we consider the race and birthsex attributes so that each

node belongs to two groups. Constraint violations are somewhat higher than for either

attribute individually, but the price of fairness remains small (1.07 for DC and 1.13 for

Maximin).

In Figure 7.2 (bottom), we examine 20 synthetic networks used by [WOdlHT18] to model

an obesity prevention intervention in the Antelope Valley region of California. Each node

in the network has a geographic region, ethnicity, age, and gender, and nodes are more

likely to connect to those with similar attributes. Each network has 500 nodes and we set

k = 25. Overall the results are similar to the homeless youth networks. One exception is

the high price of fairness that maximin suffers with respect to the “region" attribute (over

1.4), but the other PoF values are relatively low (below 1.2). We also observe that greedy

obtains the (slightly) best maximin performance for gender, likely because the network is

sufficiently well-mixed across genders that fairness is not a significant concern (as confirmed

by the extremely low DC violations). Absent true fairness concerns, greedy may perform

slightly better since it solves a simpler optimization problem. However, in the last figure, we
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examine overlapping groups given by region and ethnicity and observe that greedy actually

obtains zero maximin value, indicating that there is one group that it never reached across

any run.

7.5 Conclusions

In this chapter, we examine the problem of selecting key figures in a population to ensure

the fair spread of vital information across all groups. This problem modifies the classic

influence maximization problem with additional fairness provisions based on legal and

game theoretic concepts. We examine two methods for determining these provisions, and

show that the “Price of Fairness” for these provisions can be unbounded. We propose

an improved algorithm for multiobjective maximization to examine this problem on real

world data sets. We show that standard influence maximization techniques often neglect

smaller groups, and a diversity constraint based algorithm can ensure these groups receive

a fair allocation of resources at relatively little cost. As automated techniques become

increasingly prevalent in society and governance, our technique will help ensure that small

and marginalized groups are fairly treated.
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Part III

Learning and decisions
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Chapter 8

Melding the data-decisions pipeline

for discrete optimization

The goal in many real-world applications of artificial intelligence is to create a pipeline from

data, to predictive models, to decisions. Together, these steps enable a form of evidence-

based decision making which has transformative potential across domains such as healthcare,

scientific discovery, transportation, and more [HM10, Hor10]. This pipeline requires two

technical components: machine learning models and optimization algorithms. Machine

learning models use the data to predict unknown quantities; optimization algorithms use

these predictions to arrive at a decision which maximizes some objective. Our concern here

is combinatorial optimization, which is ubiquitous in real-world applications of artificial

intelligence, ranging from matching applicants to public housing to selecting a subset of

movies to recommend. We focus on common classes of combinatorial problems which have

well-structured continuous relaxations, e.g., linear programs and submodular maximization.

A vast literature has been devoted to combinatorial optimization [KVKV12]. Importantly

though, optimization is often insufficient without the broader pipeline because the objective

function is unknown and must predicted via machine learning.

While machine learning has witnessed incredible growth in recent years, the two pieces

of the pipeline are treated entirely separately by typical training approaches. That is, a
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system designer will first train a predictive model using some standard measure of accuracy,

e.g., mean squared error for a regression problem. Then, the model’s predictions are given

as input to the optimization algorithm to produce a decision. Such two-stage approaches

are extremely common across many domains [WXQ+06, FNP+16, MVDB17, XDF+16]. This

process is justified when the predictive model is perfect, or near-so, since completely accurate

predictions also produce the best decisions. However, in complex learning tasks, all models

will make errors and the training process implicitly trades off where these errors will occur.

When prediction and optimization are separate, this tradeoff is divorced from the goal of

the broader pipeline: to make the best decision possible.

We propose a decision-focused learning framework which melds the data-decisions pipeline

by integrating prediction and optimization into a single end-to-end system. That is, the

predictive model is trained using the quality of the decisions which it induces via the

optimization algorithm. Similar ideas have recently been explored in the context of convex

optimization [DAK17], but to our knowledge ours is the first attempt to train machine learn-

ing systems for performance on combinatorial decision-making problems. Combinatorial

settings raise new technical challenges because the optimization problem is discrete. How-

ever, machine learning systems (e.g., deep neural networks) are often trained via gradient

descent.

Our first contribution is a general framework for training machine learning models via

their performance on combinatorial problems. The starting point is to relax the combinatorial

problem to a continuous one. Then, we analytically differentiate the optimal solution to the

continuous problem as a function of the model’s predictions. This allows us to train using a

continuous proxy for the discrete problem. At test time, we round the continuous solution

to a discrete point.

Our second contribution is to instantiate this framework for two broad classes of com-

binatorial problems: linear programs and submodular maximization problems. Linear

programming encapsulates a number of classical problems such as shortest path, maximum

flow, and bipartite matching. Submodular maximization, which reflects the intuitive phe-
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nomena of diminishing returns, is also ubiquitous; applications range from social networks

[KKT03] to recommendation systems [VB10]. In each case, we resolve a set of technical

challenges to produce well-structured relaxations which can be efficiently differentiated

through.

Finally, we give an extensive empirical investigation, comparing decision-focused and

traditional methods on a series of domains. Decision-focused methods often improve

performance for the pipeline as a whole (i.e., decision quality) despite worse predictive

accuracy according to standard measures. Intuitively, the predictive models trained via our

approach focus specifically on qualities which are important for making good decisions.

By contrast, more generic methods produce predictions where error is distributed in ways

which are not aligned with the underlying task.

8.1 Problem description

We consider combinatorial optimization problems of the form maxx∈X f (x, θ), where X is a

discrete set enumerating the feasible decisions. Without loss of generality, X ⊆ {0, 1}n and

the decision variable x is a binary vector. The objective f depends on a parameter θ ∈ Θ. If θ

were known exactly, a wide range of existing techniques could be used to solve the problem.

In this chapter, we consider the challenging (but prevalent) case where θ is unknown and

must be inferred from data. For instance, in bipartite matching, x represents whether each

pair of nodes were matched and θ contains the reward for matching each pair. In many

applications, these affinities are learned from historical data.

Specifically, the decision maker observes a feature vector y ∈ Y which is correlated with

θ. This introduces a learning problem which must be solved prior to optimization. As in

classical supervised learning, we formally model y and θ as drawn from a joint distribution

P. Our algorithm will observe training instances (y1, θ1)...(yN , θN) drawn iid from P. At

test time, we are give a feature vector y corresponding to an unobserved θ. Our algorithm

will use y to predict a parameter value θ̂. Then, we will solve the optimization problem

maxx f (x, θ̂) to obtain a decision x∗. Our utility is the objective value that x∗ obtains with
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respect to the true but unknown parameter θ, f (x∗, θ).

Let m : Y → Θ denote a model mapping observed features to parameters. Our goal is to

(using the training data) find a model m which maximizes expected performance on the

underlying optimization task. Define x∗(θ) = arg maxx∈X f (x, θ) to be the optimal x for a

given θ. The end goal of the data-decisions pipeline is to maximize

E
y,θ∼P

[ f (x∗(m(y)), θ)] (8.1)

The classical approach to this problem is a two-stage method which first learns a model

using a task-agnostic loss function (e.g., mean squared error) and then uses the learned

model to solve the optimization problem. The model class will have its own parameterization,

which we denote by m(y, ω). For instance, the model class could consist of deep neural

networks where ω denotes the weights. The two-stage approach first solves the problem

minω Ey,θ∼P [L(θ, m(y, ω))], where L is a loss function. Such a loss function measures the

overall “accuracy" of the model’s predictions but does not specifically consider how m will

fare when used for decision making. The question we address is whether it is possible to do

better by specifically training the model to perform well on the decision problem.

8.2 Previous work

There is a growing body of research at the interface of machine learning and discrete

optimization [VFJ15, BD17, KDN+17, KDZ+17]. However, previous work largely focuses on

either using discrete optimization to find an accuracy-maximizing predictive model or using

machine learning to speed up optimization algorithms. Here, we pursue a deeper synthesis;

to our knowledge, this work is the first to train predictive models using combinatorial

optimization performance with the goal of improving decision making.

The closest work to ours in motivation is [DAK17], who study task-based convex

optimization. Their aim is to optimize a convex function which depends on a learned

parameter. As in their work, we use the idea of differentiating through the KKT conditions.
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However, their focus is entirely on continuous problems. Our discrete setting raises new

technical challenges, highlighted below. Elmachtoub and Grigas [EG17] also propose a

means of integrating prediction and optimization; however, their method applies strictly to

linear optimization and focuses on linear predictive models while our framework applies

to nonlinear problems with more general models (e.g., neural networks). Finally, some

work has noted that two-stage methods lead to poor optimization performance in specific

domains [BL09, FNT+15].

Our work is also related to recent research in structured prediction [BYM17, TG18,

NMBC18, DK17]. which aims to make a prediction lying in a discrete set. This is funda-

mentally different than our setting since their goal is to predict an external quantity, not

to optimize and find the best decision possible. However, structured prediction sometimes

integrates a discrete optimization problem as a module within a larger neural network. The

closest such work technically to ours is [TSK18], who design a differentiable algorithm for

submodular maximization in order to predict choices made by users. Their approach is to

introduce noise into the standard greedy algorithm, making the probability of outputting a

given set differentiable. There are two key differences between our approaches. First, their

approach does not apply to the decision-focused setting because it maximizes the likelihood

of a fixed set but cannot optimize for finding the best set. Second, exactly computing

gradients for their algorithm requires marginalizing over the k! possible permutations of the

items, forcing a heuristic approximation to the gradient. Our approach allows closed-form

differentiation.

Some deep learning architectures differentiate through gradient descent steps, related to

our approach in the submodular setting. Typically, previous approaches explicitly unroll T

iterations of gradient descent in the computational graph [Dom12]. However, this approach

is usually employed for unconstrained problems where each iteration is a simple gradient

step. By contrast, our combinatorial problems are constrained, requiring a projection step to

enforce feasibility. Unrolling the projection step may be difficult, and would incur a large

computational cost. We instead exploit the fact that gradient ascent converges to a local

174



optimum and analytically differentiate via the KKT conditions.

8.3 General framework

Our goal is to integrate combinatorial optimization into the loop of gradient-based training.

That is, we aim to directly train the predictive model m by running gradient steps on the

objective in Equation 8.1, which integrates both prediction and optimization. The immediate

difficulty is the dependence on x∗(m(y, ω)). This term is problematic for two reasons. First,

it is a discrete quantity since x∗ is a decision from a binary set. This immediately renders

the output nondifferentiable with respect to the model parameters ω. Second, even if x∗

were continuous, it is still defined as the solution to an optimization problem, so calculating

a gradient requires us to differentiate through the argmax operation.

We resolve both difficulties by considering a continuous relaxation of the combinatorial

decision problem. We show that for a broad class of combinatorial problems, there are

appropriate continuous relaxations such that we can analytically obtain derivatives of the

continuous optimizer with respect to the model parameters. This allows us to train any

differentiable predictive model via gradient descent on a continuous surrogate to Equation

8.1. At test time, we solve the true discrete problem by rounding the continuous point.

More specifically, we relax the discrete constraint x ∈ X to the continuous one x ∈
conv(X ) where conv denotes the convex hull. Let x(θ) = arg maxx∈conv(X ) f (x, θ) denote

the optimal solution to the continuous problem. To train our predictive model, we would

like to compute gradients of the whole-pipeline objective given by Equation 8.1, replacing

the discrete quantity x∗ with the continuous x. We can obtain a stochastic gradient estimate

by sampling a single (y, θ) from the training data. On this sample, the chain rule gives

d f (x(θ̂), θ)

dω
=

d f (x(θ̂), θ)

dx(θ̂)
dx(θ̂)

dθ̂

dθ̂

dω

The first term is just the gradient of the objective with respect to the decision variable x,

and the last term is the gradient of the model’s predictions with respect to its own internal
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parameterization.

The key is computing the middle term, which measures how the optimal decision

changes with respect to the prediction θ̂. For continuous problems, the optimal continuous

decision x must satisfy the KKT conditions (which are sufficient for convex problems). The

KKT conditions define a system of linear equations based on the gradients of the objective

and constraints around the optimal point. Is is known that by applying the implicit function

theorem, we can differentiate the solution to this linear system [GFC+16, DAK17]. In more

detail, recall that our continuous problem is over conv(X ), the convex hull of the discrete

feasible solutions. This set is a polytope, which can be represented via linear equalities as

the set {x : Ax ≤ b} for some matrix A and vector b. Let (x, λ) be pair of primal and dual

variables which satisfy the KKT conditions. Then differentiating the conditions yields that

 ∇2
x f (x, θ) AT

diag(λ)A diag(Ax− b)


 dx

dθ

dλ
dθ

 =

 d∇x f (x,θ)
dθ

0

 (8.2)

By solving this system of linear equations, we can obtain the desired term dx
dθ . However,

the above approach is a general framework; our main technical contribution is to instantiate

it for specific classes of combinatorial problems. Specifically, we need (1) an appropriate

continuous relaxation, along with a means of solving the continuous optimization problem

and (2) efficient access to the terms in Equation 8.2 which are needed for the backward pass

(i.e., gradient computation). We provide both ingredients for two broad classes of problems:

linear programming and submodular maximization. In each setting, the high-level challenge

is to ensure that the continuous relaxation is differentiable, a feature not satisfied by naive

alternatives. We also show how to efficiently compute terms needed for the backward pass,

especially for the more intricate submodular case.

8.3.1 Linear programming

The first setting that we consider is combinatorial problems which can be expressed as a

linear program with equality and inequality constraints in the form
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max θTx s.t. Ax = b, Gx ≤ h (8.3)

Example problems include shortest path, maximum flow, bipartite matching, and a range

of other domains. For instance, in a shortest path problem θ contains the cost for traversing

each edge, and we are interested in problems where the true costs are unknown and must

be predicted. Since the LP can be regarded as a continuous problem (it just happens that

the optimal solutions in these example domains are integral), we could attempt to apply

Equation 8.2 and differentiate the solution. This approach runs into an immediate difficulty:

the optimal solution to an LP may not be differentiable (or even continuous) with respect

to θ. This is because the optimal solution may “jump" to a different vertex. Formally, the

left-hand side matrix in Equation 8.2 becomes singular since ∇2
x f (x, θ) is always zero. We

resolve this challenge by instead solving the regularized problem

max θTx− γ||x||22 s.t. Ax = b, Gx ≤ h (8.4)

which introduces a penalty proportional to the squared norm of the decision vector. This

transforms the LP into a strongly concave quadratic program (QP). The Hessian is given by

∇2
x f (x, θ) = −2γI (where I is the identity matrix), which renders the solution differentiable

under mild conditions:

Theorem 20. Let x(θ) denote the optimal solution of Problem 8.4. Provided that the problem is

feasible and all rows of A are linearly independent, x(θ) is differentiable with respect to θ almost

everywhere. If A has linearly dependent rows, removing these rows yields an equivalent problem

which is differentiable almost everywhere. Wherever x(θ) is differentiable, it satisfies the conditions

in Equation 8.2.

Proof. We start with the case where all rows of A are linearly independent. Here, the

result follows easily from Theorem 1 of [AK17] since the Hessian matrix is γI and hence

guaranteed to be positive definite.
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When A has linearly dependent rows, we argue that these rows can be removed without

changing the feasible region. Consider two rows ai and aj such that for all x, a>i x = ca>j x for

some scalar c. We are guaranteed that the problem is feasible, meaning that there exists an x

which satisfies both constraints simultaneously. For this x, we have a>i x = bi and a>j x = bj.

But since a>i x = ca>j x, we must have bi = cbj. Accordingly, constraint i is satisfied if and

only if constraint j is satisfied, and so removing one of the constraints leaves the feasible set

unchanged. Applying this argument inductively yields the theorem.

Moreover, we can control the loss that regularization can cause on the original, linear

problem:

Theorem 21. Define D = maxx,y∈conv(X ) ||x− y||2 as the squared diameter of the feasible set and

OPT to be the optimal value for Problem 8.3. We have θ>x(θ) ≥ OPT − γD.

Proof. Let xmax = arg maxy∈conv(X ) ||y||2. We have that

θ>x(θ) = max
y

[
θ>y− γ||y||2

]
+ ||x(θ)||2

≥ max
y

[
θ>y

]
− γ||xmax||2 + γ||x(θ)||2

= max
y

[
θ>y

]
+ γ

(
||x(θ)||2 − ||xmax||2

)
≥ OPT − γ||x(θ)− xmax||2

≥ OPT − γD

where the second inequality uses the reverse triangle inequality.

Together, these results give us a differentiable surrogate which still enjoys an approxima-

tion guarantee relative to the integral problem. Computing the backward pass via Equation

8.2 is now straightforward since all the relevant terms are easily available. Since ∇xθ>x = θ,

we have d∇x f (x,θ)
dθ = I. All other terms are easily computed from the optimal primal-dual

pair (x, λ) which is output by standard QP solvers. We can also leverage a recent QP solver

[AK17] which maintains a factorization of the KKT matrix for a faster backward pass. At

test time, we simply set γ = 0 to produce an integral decision.
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8.3.2 Submodular maximization

We consider problems where the underlying objective to maximize a set function f : 2V → R,

where V is a ground set of items. A set function is submodular if for any A ⊆ B and any

v ∈ V \ B, f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B). We will restrict our consideration to

submodular functions which are monotone ( f (A ∪ {v})− f (A) ≥ 0 ∀A, v) and normalized

f (∅) = 0. This class of functions contains many combinatorial problems which have been

considered in machine learning and artificial intelligence (e.g., influence maximization,

facility location, diverse subset selection, etc.). We focus on the cardinality-constrained

optimization problem max|S|≤k f (S), though our framework easily accommodates more

general matroid constraints.

Continuous relaxation: We employ the canonical continuous relaxation for submodular

set functions, which associates each set function f with its multilinear extension F [CCPV11].

We can view a set function as defined on the domain {0, 1}|V|, where each element is an

indicator vector which the items contained in the set. The extension F is a continuous

function defined on the hypercube [0, 1]|V|. We interpret a given fraction vector x ∈ [0, 1]|V|

as giving the marginal probability that each item is included in the set. F(x) is the

expected value of f (S) when each item i is included in S independently with probability

xi. In other words, F(x) = ∑S⊆V f (S)∏i∈S xi ∏i 6∈S 1− xi. While this definition sums over

exponentially many terms, arbitrarily close approximations can be obtained via random

sampling. Further, closed forms are available for many cases of interest [IJB14]. Importantly,

well-known rounding algorithms [CCPV11] can convert a fractional point x to a set S

satisfying E[ f (S)] ≥ F(x); i.e., the rounding is lossless.

As a proxy for the discrete problem max|S|≤k f (S), we can instead solve maxx∈conv(X ) F(x),

where X = {x ∈ {0, 1}|V| : ∑i xi ≤ k}. Unfortunately, F is not in general concave. Neverthe-

less, many first-order algorithms still obtain a constant factor approximation. For instance, a

variant of the Frank-Wolfe algorithm solves the continuous maximization problem with the

optimal approximation ratio of (1− 1/e) [CCPV11, BMBK17].

However, non-concavity complicates the problem of differentiating through the contin-
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uous optimization problem. Any polynomial-time algorithm can only be guaranteed to

output a local optimum, which need not be unique (compared to strongly convex problems,

where there is a single global optimum). Consequently, the algorithm used to select x(θ)

might return a different local optimum under an infinitesimal change to θ. For instance,

the Frank-Wolfe algorithm (the most common algorithm for continuous submodular max-

imization) solves a linear optimization problem at each step. Since (as noted above), the

solution to a linear problem may be discontinuous in θ, this could render the output of the

optimization problem nondifferentiable.

We resolve this difficulty through a careful choice of optimization algorithm for the for-

ward pass. Specifically, we use apply projected stochastic gradient ascent (SGA), which has

recently been shown to obtain a 1
2 -approximation for continuous submodular maximization

[HSK17]. Although SGA is only guaranteed to find a local optimum, each iteration applies

purely differentiable computations (a gradient step and projection onto the set conv(X )),

and so the final output after T iterations will be differentiable as well. Provided that T is

sufficiently large, this output will converge to a local optimum, which must satisfy the KKT

conditions. Hence, we can apply our general approach to the local optimum returned by

SGA. The following theorem shows that the local optima of the multilinear extension are

differentiable:

Theorem 22. Suppose that x∗ is a local maximum of the multilinear extension, i.e,.,∇xF(x∗, θ) = 0

and ∇2
xF(x∗, θ) � 0. Then, there exists a neighborhood I around x∗ such that the maximizer of

F(·, θ) within I ∩ conv(X ) is differentiable almost everywhere as a function of θ, with dx(θ)
dθ

satisfying the conditions in Equation 8.2.

Proof. Since X = {x ∈ {0, 1}|V| : ∑i xi ≤ k}, conv(X ) is described by the two inequality

constraints −Ix ≤ 0 and 1>x ≤ k. It is easy to see that the corresponding constraint matrix A

has full row rank. Even though F is not concave, any stationary point (x, λ) must satisfy the

KKT conditions. By applying the implicit function theorem to differentiate these equations,
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we get the form  ∇2
xF(x, θ) AT

diag(λ)A diag(Ax− b)


 dx

dθ

dλ
dθ

 =

 d∇x f (x,θ)
dθ

0


So long as the right hand side matrix is invertible almost everywhere, the implicit

function theorem guarantees that dx
dθ exists in a neighborhood of x and satisfies the above

conditions. Note that at a local maximum, we have ∇2
xF(x, θ) � 0, implying that the Hessian

matrix must be invertible. Accordingly, it is easy to show that the RHS matrix is nonsingular

by applying the same logic as [AK17] (Theorem 1).

We remark that Theorem 22 requires a local maximum, while gradient ascent may in

theory find saddle points. However, recent work shows that random perturbations ensure

that gradient ascent quickly escapes saddle points and finds an approximate local optimum

[JGN+17].

Efficient backward pass: We now show how the terms needed to compute gradients

via Equation 8.2 can be efficiently obtained. In particular, we need access to the optimal

dual variable λ as well as the term d∇x F(x,θ)
dθ . These were easy to obtain in the LP setting but

the submodular setting requires some additional analysis. Nevertheless, we show that both

can be obtained efficiently.

Optimal dual variables: SGA only produces the optimal primal variable x, not the

corresponding dual variable λ which is required to solve Equation 8.2 in the backward

pass. We show that for cardinality-constrained problems, we can obtain the optimal dual

variables analytically given a primal solution x. Let λL
i be the dual variable associated

with the constraint xi ≥ 0, λU
i with xi ≤ 1 and λS with ∑i xi ≤ k. By differentiating the

Lagrangian, any optimum satisfies

∇xi f (x)− λL
i + λU

i + λS
i = 0 ∀i

where complementary slackness requires that λL
i = 0 if xi > 0 and λU

i = 0 if xi < 1.
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Further, it is easy to see that for all i with 0 < xi < 1, ∇xi f (x) must be equal. Otherwise, x

could not be (locally) optimal since we could increase the objective by finding a pair i, j with

∇xi f (x) > ∇xj f (x), increasing xi, and decreasing xj. Let ∇∗ denote the shared gradient

value for fractional entries. We can solve the above equation and express the optimal dual

variables as

λS = −∇∗, λL
i = λS −∇xi f , λU

i = ∇xi f − λS

where the expressions for λL
i and λU

i apply only when xi = 0 and xi = 1 respectively

(otherwise, complementary slackness requires these variables be set to 0).

Computing d
d`∇xF(x, `): We show that this term can be obtained in closed form for the

case of probabilistic coverage functions, which includes many cases of practical interest (e.g.

budget allocation, sensor placement, facility location, etc.). However, our framework can be

applied to arbitrary submodular functions; we focus here on coverage functions just because

they are particularly common in applications. A coverage function takes the following form.

There a set of items U, and each j ∈ U has a weight wj. The algorithm can choose from a

ground set V of actions. Each action ai covers each item j independently with probability θij.

We consider the case where the probabilities θ are be unknown and must be predicted from

data. For such problems, the multilinear extension has a closed form

F(x, θ) = ∑
j∈U

wj

(
1−∏

i∈V
1− xijθij

)

and we can obtain the expression

d
dθkj
∇xi F(x, θ) =


−θijxk ∏` 6=i,k 1− x`θ`j if k 6= i

∏k 6=i 1− xkθkj otherwise.
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Table 8.1: Solution quality of each method for the full data-decisions pipeline.

Budget allocation Matching Diverse recommendation

k = 5 10 20 − 5 10 20

NN1-Decision 49.18 ± 0.24 72.62 ± 0.33 98.95 ± 0.46 2.50 ± 0.56 15.81 ± 0.50 29.81 ± 0.85 52.43 ± 1.23
NN2-Decision 44.35 ± 0.56 67.64 ± 0.62 93.59 ± 0.77 6.15 ± 0.38 13.34 ± 0.77 26.32 ± 1.38 47.79 ± 1.96

NN1-2Stage 32.13 ± 2.47 45.63 ± 3.76 61.88 ± 4.10 2.99 ± 0.76 4.08 ± 0.16 8.42 ± 0.29 19.16 ± 0.57
NN2-2Stage 9.69 ± 0.05 18.93 ± 0.10 36.16 ± 0.18 3.49 ± 0.32 11.63 ± 0.43 22.79 ± 0.66 42.37 ± 1.02

RF-2Stage 48.81 ± 0.32 72.40 ± 0.43 98.82 ± 0.63 3.66 ± 0.26 7.71 ± 0.18 15.73 ± 0.34 31.25 ± 0.64
Random 9.69 ± 0.04 18.92 ± 0.09 36.13 ± 0.14 2.45 ± 0.64 8.19 ± 0.19 16.15 ± 0.35 31.68 ± 0.71

8.4 Experiments

We conduct experiments across a variety of domains in order to compare our decision-

focused learning approach with traditional two stage methods. We start out by describing

the experimental setup for each domain. Then, we present results for the complete data-

decisions pipeline in each domain (i.e., the final solution quality each method produces

on the optimization problem). We find that decision-focused learning almost always

outperforms two stage approaches. To investigate this phenomenon, we show more detailed

results about what each model learns. Two stage approaches typically learn predictive

models which are more accurate according to standard measures of machine learning

accuracy. However, decision-focused methods learn qualities which are important for

optimization performance even if this leads to lower accuracy in an overall sense.

Budget allocation: We start with a synthetic domain which allows us to illustrate

how our methods differ from traditional approaches and explore when improved decision

making is achievable. This example concerns budget allocation, a submodular maximization

problem which models an advertiser’s choice of how to divide a finite budget k between a set

of channels. There is a set of customers R and the objective is f (S) = ∑v∈R 1−∏u∈S(1− θuv),

where θuv is the probability that advertising on channel u will reach customer v. This is the

expected number of customers reached. Variants on this problem have been the subject of a

great deal of research [AGT12, SKIK14, MIFK15].

In our problem, the matrix θ is not known in advance and must be learned from data.

The ground truth matrices were generated using the Yahoo webscope [Yah07] dataset which

logs bids placed by advertisers on a set of phrases. In our problem, the phrases are channels
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and the accounts are customers. Each instance samples a random subset of 100 channels

and 500 customers. For each edge (u, v) present in the dataset, we sample θuv uniformly

at random in [0,0.2]. For each channel u, we generate a feature vector from that channel’s

row of the matrix, θu via complex nonlinear function. Specifically, θu is passed through

a 5-layer neural network with random weight matrices and ReLU activations to obtain a

feature vector yu. The learning task is to reconstruct θu from yu. The optimization task is to

select k channels in order to maximize the number of customers reached.

Bipartite matching: This problem occurs in many domains; e.g., bipartite matching

has been used to model the problem of a public housing programs matching housing

resources to applicants [BCH+18] or platforms matching advertisers with users [BK07]. In

each of these cases, the reward to matching any two nodes is not initially known, but is

instead predicted from the features available for both parties. Bipartite matching can be

formulated as a linear program, allowing us to apply our decision-focused approach. The

learning problem is to use node features to predict whether each edge is present or absent

(a classification problem). The optimization problem is to find a maximum matching in the

predicted graph.

Our experiments use the cora dataset [SNB+08]. The nodes are scientific papers and

edges represent citation. Each node’s feature vector indicating whether each word in a

vocabulary appeared in the paper (there are 1433 such features). The overall graph has

2708 nodes. In order to construct instances for the decision problem, we partitioned the

complete graph into 27 instances, each with 100 nodes, using metis [KK98]. We divided

the nodes in each instance into the sides of a bipartite graph (of 50 nodes each) such that

the number of edges crossing sides was maximized. The learning problem is much more

challenging than before: unlike in budget allocation, the features do not contain enough

information to reconstruct the citation network. However, a decision maker may still benefit

from leveraging whatever signal is available.

Diverse recommendation: One application of submodular optimization is to select

diverse sets of item, e.g. for recommendation systems or document summarization. Suppose
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Table 8.2: Accuracy of each method according to standard measures.

Budget allocation Matching Diverse recommendation

MSE CE AUC CE AUC

NN1-Decision 0.8673e-02 ± 1.83e-04 0.994 ± 0.002 0.501 ± 0.011 1.053 ± 0.005 0.593 ± 0.003
NN2-Decision 1.7118e-02 ± 2.65e-04 0.689 ± 0.004 0.560 ± 0.006 1.004 ± 0.022 0.577 ± 0.008

NN1-2Stage 0.0501e-02 ± 2.67e-06 0.696 ± 0.001 0.499 ± 0.013 0.703 ± 0.001 0.389 ± 0.003
NN2-2Stage 0.0530e-02 ± 2.27e-06 0.223 ± 0.005 0.498 ± 0.007 0.690 ± 0.000 0.674 ± 0.004

RF-2Stage 0.0354e-02 ± 4.17e-06 0.693 ± 0.000 0.500 ± 0.000 0.689 ± 0.000 0.500 ± 0.000

that each item i is associated with a set of topics t(i). Then, we aim to select a set of k items

which collectively cover as many topics as possible: f (S) = |⋃i∈S t(i)|. Such formulations

have been used across recommendation systems [AKBW15], text summarization [TO09],

web search [AGHI09] and image segmentation [PJB14].

In many applications, the item-topic associations t(i) are not known in advance. Hence,

the learning task is to predict a binary matrix θ where θij is 1 if item i covers topic j and

0 otherwise. The optimization task is to find a set of k items maximizing the number of

topics covered according to θ. We consider a recommendation systems problem based on

the Movielens dataset [Gro11] in which 2113 users rate 10197 movies (though not every user

rated every movie). The items are the movies, while the topics are the top 500 actors. In our

problem, the movie-actor assignments are unknown, and must be predicted only from user

ratings. This is a multilabel classification problem where we attempt to predict which actors are

associated with each movie. We randomly divided the movies into 101 problem instances,

each with 100 movies. The feature matrix y contains the ratings given by each of the 2113

users for the 100 movies in the instance (with zeros where no rating is present).

Algorithms and experimental setup: In each domain, we randomly divided the

instances into 80% training and 20% test. All results are averaged over 30 random splits.

Our decision-focused framework was instantiated using feed-forward, fully connected

neural networks as the underlying predictive model. All networks used ReLU activations.

We experimented with networks with 1 layer, representing a restricted class of models, and

2-layer networks, where the hidden layer (of size 200) gives additional expressive power.

We compared two training methods. First, the decision-focused approach proposed above.
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Second, a two stage approach that uses a machine learning loss function (mean squared

error for regression tasks and cross-entropy loss for classification). This allows us to isolate the

impact of the training method since both use the same underlying architecture. We experimented

with additional layers but observed little benefit for either method. All networks were

trained using Adam with learning rate 10−3. We refer to the 1-layer decision focused

network as NN1-Decision and the 1-layer two stage network as NN1-2Stage (with analogous

names for the 2-layer networks). We also compared to a random forest ensemble of 100

decisions trees (RF-2Stage). Gradient-based training cannot be applied to random forests, so

benchmark represents a strong predictive model which can be used by two stage approaches

but not by our framework. Lastly, we show performance for a random decision.

Solution quality: Table 8.1 shows the solution quality that each approaches obtains on

the full pipeline; i.e., the objective value of its decision evaluated using the true parameters.

Each value is the mean (over the 30 iterations) and a bootstrapped 95% confidence interval.

For the budget allocation and diverse recommendation tasks, we varied the budget k.

The decision-focused methods obtain the highest-performance across the board, tied with

random forests on the synthetic budget allocation task.

We now consider each individual domain, starting with budget allocation. Both decision-

focused methods substantially outperform the two-stage neural networks, obtaining at

least 37% greater objective value. This demonstrates that with fixed predictive architecture,

decision-focused learning can greatly improve solution quality. NN1-Decision performs

somewhat better than NN2-Decision, suggesting that the simpler class of models is easier to

train. However, NN1-2Stage performs significantly worse than NN1-Decision, indicating

that alignment between training and the decision problem is highly important for simple

models to succeed. RF-2Stage performs essentially equivalently to NN1-Decision. This is

potentially surprising since random forest are a much more expressive model class. As we

will see later, much of the random forest’s success is due to the fact that the features in this

synthetic domain are very high-signal; indeed, they suffice for near-perfect reconstruction.

The next two domains, both based on real data, explore low-signal settings where highly
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Figure 8.1: Visualization of predictions made by each model. (a) ground truth (b) NN1-2Stage (c) NN1-
Decision

accurate recovery is impossible.

In bipartite matching, NN2-Decision obtains the highest overall performance, making

nearly over 70% more matches than the next best method (RF-2Stage, followed closely by

NN2-2Stage). Both 1-layer models perform extremely poorly, indicating that the more

complex learning problem requires a more expressive model class. However, the highly

expressive RF-2Stage does only marginally better than NN2-2Stage, demonstrating the

critical role of aligning training and decision making.

In the diverse recommendation domain, NN1-Decision has the best performance, fol-

lowed closely by NN2-Decision. NN2-2Stage trails by 23%, and NN1-2Stage performs

extremely poorly. This highlights the importance of the training method within the same

class of models: NN1-Decision obtains approximately 2.7 times greater objective value than

NN1-2Stage. RF-2Stage also performs poorly in this domain, and is seemingly unable to

extract any signal which boosts decision quality above that of random.

Exploration of learned models: We start out by showing the accuracy of each method

according to standard measures, summarized in Table 8.2. For classification domains (diverse

recommendation, matching), we show cross-entropy loss (which is directly optimized by

the two stage networks) and AUC. For regression (the budget allocation domain), we show

mean squared error (MSE). For budget allocation and diverse recommendation, we fixed

k = 10.
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Figure 8.2: Left: our method’s predicted total out-weight for each item. Right: predictions from two stage
method.

The two-stage methods are, in almost all cases, significantly more accurate than the

decision-focused networks despite their worse solution quality. Moreoever, no accuracy

measure is well-correlated with solution quality. On budget allocation, the two decision-

focused networks have the worst MSE but the best solution quality. On bipartite matching,

NN2-2Stage has better cross-entropy loss but much worse solution quality than NN2-

Decision. On diverse recommendation, NN2-2Stage has the best AUC but worse solution

quality than either decision-focused network.

This incongruity raises the question of what differentiates the predictive models learned

via decision-focused training. We now show more a more detailed exploration of each

model’s predictions. We focus first on the simpler case of the synthetic budget allocation task,

comparing NN1-Decision and NN1-2Stage. However, the higher-level insights generalize

across domains, detailed after.

Figure 8.1 shows each model’s predictions on an example instance. Each heat map shows

a predicted matrix θ, where dark entries correspond to a high prediction and light entries

to low. The first matrix is the ground truth. The second matrix is the prediction made by

NN1-2Stage, which matches the overall sparsity of the true θ but fails to recover almost all of

the true connections. The last matrix corresponds to NN1-Decision and appears completely

dissimilar to the ground truth. Nevertheless, these seemingly nonsensical predictions lead

to the best quality decisions.

To investigate the connection between predictions and decision, Figure 8.2 aggregates
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Figure 8.3: Diverse recommendation predictions. Top to bottom: ground truth, our method’s prediction (by
NN2-Decision), two stage prediction (by NN2-2Stage)

each model’s predictions at the channel level. Formally, we examine the predicted out-

weight for each channel u, i.e., the sum of the row θu. This is a coarse measure of u’s

importance for the optimization problem; channels with connections to many customers

are more likely to be good candidates for the optimal set. Surprisingly, NN1-Decision’s

predicted out-weights are extremely well correlated with the ground truth out-weights

(r2 = 0.94). However, the absolute magnitude of its predictions are skewed: the bulk of

channels have low outweight (less than 1), but NN1-Decision’s predictions are all at least

13. By contrast NN1-2Stage has poorer correlation, making it less useful for identifying

the outliers which comprise the optimal set. However, it better matches the values of low

out-weight channels and hence attains better MSE. This illustrates how aligning the model’s

training with the optimization problem leads it to focus on qualities which are specifically

important for decision making, even if this compromises accuracy elsewhere.

We now show more detailed analysis of the predictions made by each model in the

other two domains: diverse recommendation and bipartite matching. The general trends

are similar to those observed for budget allocation (although the results are somewhat

messier for the real-data domains). We see that the decision-focused neural network makes

apparently nonsensical predications. However, the out-weight that it predicts for each item

is better correlated with the ground truth than for the two stage method.
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Figure 8.4: Diverse recommendation predicted outweight according to NN2-Decision (right) and NN2-2Stage
(left).

Figure 8.5: Bipartite matching predictions. Left to right: ground truth adjacency matrix, our method’s
prediction (NN2-Decision), two stage prediction (NN2-2Stage).
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Figure 8.6: Bipartite matching predicted outweight according to NN2-Decision (right) and NN2-2Stage (left).
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8.5 Conclusion

We propose a means of integrating a broad family of combinatorial optimization problems

into the training of machine learning models by differentiating through solutions to a

continuous relaxation of the discrete problem. This process aligns predictions with the end

goals of a decision maker. Experimental results show that decision-focused learning can

substantially improve solution quality (measured in terms of final optimization performance)

across a variety of domains. By contrast, standard machine learning loss functions often fail

to prioritize the qualities required for successful decision making. These results demonstrate

that true end-to-end training is an important component of building a data-decisions

pipeline.
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Chapter 9

Decision-focused learning for

tuberculosis medication adherence

Tuberculosis (TB) is one of the largest challenges in public health, ranking in the top ten

causes of death worldwide [Org18]. Treatment for TB requires a long (typically at least six

month) course of daily antibiotics. Low adherence to this treatment results in a range of

problems for patients and the community, including greater risk of reinfection or death

and the development of drug-resistant strains [TGS+05]. The gold-standard protocol for TB

treatment, recommended by the WHO, is directly observed treatment (DOTS) where a health

worker watches a patient take their medication each day. However, DOTS is impractical in

much of the world for a variety of reasons and creates substantial barriers to care, especially

if patients are required to travel to a treatment center every day to receive their medication.

Digital adherence technologies (DATs) offer a more flexible alternative for frontline health

workers to monitor adherence and offer support to nonadherent patients [SdMM+18]. One

example of a DAT, specifically relevant to this chapter, is the 99DOTS system [CGL+19]. In

99DOTS, patients place a toll-free call to a specially-generated phone number each day to

verify that they took their medication. Globally, a number of DATs have been proposed in

different settings, with evidence to suggest that their adoption can improve adherence rates

for a range of diseases [HMT+17, CKB+16, SDG+15].
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One potential use of DATs is to prioritize the highest-risk patients for potentially

costly interventions by frontline health workers. Oftentimes, health workers face high case

loads and cannot carry out time-intensive interventions (e.g., home visits) with the entire

population of patients who might benefit. Accordingly, DATs offer an opportunity for health

workers to more easily observe which patients are at greater risk of non-adherence and

targeted their limited resources accordingly. Currently, such targeted happens mostly in a

reactive fashion, where health workers intervene with patients after that patient has missed

several doses in the recent past.

This chapter explores the potential for machine learning to support a more proactive

stance by predicting the risk of future non-adherence for each patient and suggesting an

optimal set of interventions to visit patients before they miss doses. This project is based

on a collaboration with the Government of Maharashtra which focused on TB care in the

city of Mumbai. In Mumbai, TB patients are enrolled in the 99DOTS system [CGL+19],

developed by the healthcare technology company Everwell [?]. We start by formulating

an optimization problem which models the challenge of assigning health workers to carry

out in-person interventions with patients. Then, using historical adherence data from

99DOTS on TB patients in Mumbai, we develop a machine learning model to predict future

patient adherence, which appears as an unknown parameter in the objective function of the

optimization problem. We compare the machine learning model’s performance when trained

using the decision-focused methodology introduced in Chapter 8 to when it is trained using

a standard two-stage approach. Our results show that decision-focused training improves

the number of successful interventions suggested by the system by approximately 15%.

9.1 Optimization formulation

We focus on a specific optimization problem that models the allocation of health workers

to intervene with patients who are at risk in the near future. This provides a case study to

evaluate the potential benefits of decision-focused learning in this domain. However, we

emphasize that our system can be easily modified to capture other intervention problems.
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Figure 9.1: 99DOTS electronic adherence dashboard seen by health workers for a given month. Missed doses
are marked in red while consumed doses are marked in green.

Such flexibility is one benefit to our technical approach, which allows the ML model to

automatically adapt to the problem specified by a domain expert.

Our optimization problem models a health worker who plans a series of interventions

over the course of a week. The health worker is responsible for a population of patients

across different locations, and may visit one location each day. We use location identifiers

at the level of the TB Unit since this is the most granular identifier which is shared by the

majority of patients in our dataset. Visiting a location allows the health worker to intervene

with any of the patients at that location. The optimization problem is to select a set of

locations to visit which maximizes the number of patients who receive an intervention on or

before the first day they would have missed a dose. We refer to this quantity as the number of

successful interventions, which we choose as our objective for two reasons. First, it measures

the extent to which the health worker can proactively engage with patients before adherence

suffers. Second, this objective resolves an important challenge in evaluating counterfactual

outcomes for this domain. The key problem is that we do not observe the exact set of

interventions carried out by health workers in the dataset. However, we do know that

existing policies call for health workers to intervene with patients after they miss several
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consecutive doses, at which point the system marks the patient as "high" priority instead

of "medium". Our objective counts patients who start the week at "medium" priority but

who will in the future start to miss doses. This allows our objective to measure the extent

to which health workers successfully intervene proactively with patients who would not

otherwise have been targets for intervention but who are actually at high risk.

We now show how this optimization problem can be formalized as a linear program.

We have a set of locations i = 1...L and patients j = 1...N where patient j has location `j.

Over days of the week t = 1...7, the objective coefficient cjt is 1 if an intervention on day t

with patient j is successful and 0 otherwise. Our decision variable is xit, and takes the value

1 if the health worker visit location i on day t and 0 otherwise. With this notation, the final

LP is as follows:

max
x

7

∑
t=1

L

∑
i=1

xit

 ∑
j:`j=i

cjt


s.t.

L

∑
i=1

xit ≤ 1, t = 1...7

7

∑
t=1

xit ≤ 1, i = 1...L

0 ≤ xit ≤ 1 ∀i, t

where the second constraint prevents the objective from double-counting multiple visit to a

location. We remark that the feasible region of the LP can be shown to be equivalent to a

bipartite matching polytope, implying that the optimal solution is always integral.

9.2 Integrating machine learning and optimization

The machine learning task is to predict the values of the cjt, which are unknown at the

start of the week. To train machine learning models for this task, we use data provided

by the Government of Maharashtra on TB patients in Mumbai. We have two main sets of

information about each patients. First, some basic demographic information (weight-band,

age-band, gender and treatment center ID). Second, the patient’s history of adherence to
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Table 9.1: Data Summary. *Doses per patient was calculated only on patients enrolled at least 6 months
before Sept 2018.

Metric Count

Total doses recorded 2,169,976
—By patient call 1,459,908
—Manual (entered by health worker) 710,068
Registered phones 38,000
Patients 16,975
Health centers 252
Doses recorded per patient*
—Quartiles 57/149/188
—Min/Mean/Max 1/136/1409
Active patients per center per month
—Quartiles 7/18/35
—Min/Mean/Max 1/25/226

date as recorded by 99DOTS. Patients in 99DOTS receive each sleeve of pills wrapped in a

cover. The cover contains a hidden phone number associated with each pill; when patients

retrieve the pill for each day, they also reveal the associated phone number. Patients place a

toll-free call to the number in order to indicate that they took their medication. The dataset

records whether this call was received each day, along with some metadata such as the time

of day at which the call was placed. In total, the data contains over 2.1 million dose records

for about 17,000 patients, served by 252 health centers across Mumbai from Feb 2017 to

Sept 2018. Table 9.1 provides an overview of the dataset. Using this data, we compare the

performance of three predictive models. Each of these models makes a prediction about the

value of the cjt variables representing future adherence for a patient. We compare models

based both on their predictive accuracy for this task as well as the solution quality induced

by using their predictions to solve the above LP (i.e., using the predictions to produce a

proposed set of interventions by health workers).

First, we implement a baseline referred to as lw-Misses. This baseline approximates

the current policies used by frontline health workers, where patients are prioritized for
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intervention after missing some number of doses. To implement this heuristic on the context

of the task of predicting cjt, we threshold the number of doses patient j missed in the last

week, setting cjt = 0 for all t if this value falls below the threshold τ and cjt = 1 otherwise.

We used τ = 1 since it performed best.

Second, we trained a neural network to predict the true cjt as a classification prediction

task using cross-entropy loss. This model, referred to as LEAP, uses a fully-connected

layer to combine the output of both a LSTM (which uses the time series of a patient’s past

adherence) and that of another fully-connected layer (which uses the patient’s demographic

features). More details on LEAP can be found in [KWS+19]. This model represents a

well-engineered two stage approach.

Third, we trained the same LEAP architecture to predict cjt using performance on

the above optimization problem as the loss function. This is accomplished by using the

quadratically regularized LP formulation introduced in Chapter 8. We refer to this model as

LEAP-Decision.

We created instances of the decision problem by randomly partitioning patients into

groups of 100, modeling a health worker under severe resource constraints (as they would

benefit most from such a system). We included all patients, including those with no missed

doses in the last week, since the overall resource allocation problem over locations must still

account for them.

Figure 9.2 shows results for this task. In the top row, we see that LEAP and LEAP-

Decision both outperform lw-Misses, as expected. LEAP-Decision improves the number

of successful interventions by approximately 15% compared to LEAP, demonstrating the

value of tailoring the learned model to a given planning problem. LEAP-Decision actually

has worse AUC than either LEAP or lw-Misses, indicating that typical measures of machine

learning accuracy are not a perfect proxy for utility in decision making. To investigate

what specifically distinguishes the predictions made by LEAP-Decision, the bottom row

of Figure 9.2 shows scatter plots of the predicted utility at each location according to

LEAP and LEAP-Decision versus the true values. Visually, LEAP-Decision appears better
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Figure 9.2: Results for decision focused learning problem. Top row: successful interventions and AUC for
each method. Bottom row: visualizations of model predictions.

able to distinguish the high-utility outliers which are most important to making good

decisions. Quantitatively, LEAP-Decision’s predictions have worse correlation with the

ground truth overall (0.463, versus 0.519 for LEAP), but better correlation on locations where

the true utility is strictly more than 1 (0.504 versus 0.409). Hence, decision-focused training

incentivizes the model to focus on making accurate predictions specifically for locations that

are likely to be good candidates for an intervention. This demonstrates the benefit of our

flexible machine learning modeling approach, which can use custom-defined loss functions

to automatically adapt to particular decision problems.
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Chapter 10

Learning to optimize on graphs

While deep learning has proven enormously successful at a range of tasks, an expanding

area of interest concerns systems that can flexibly combine learning with optimization.

Examples include recent attempts to solve combinatorial optimization problems using neural

architectures [VFJ15, KDZ+17, BPL+16, KvHW19], as well as work which incorporates

explicit optimization algorithms into larger differentiable systems [AK17, DAK17, WDT19].

The ability to combine learning and optimization promises improved performance for

real-world problems which require decisions to be made on the basis of machine learning

predictions by enabling end-to-end training which focuses the learned model on the decision

problem at hand.

We focus on graph optimization problems, an expansive subclass of combinatorial

optimization. While graph optimization is ubiquitous across domains, complete applications

must also solve machine learning challenges. For instance, the input graph is usually

incomplete; some edges may be unobserved or nodes may have attributes that are only

partially known. Recent work has introduced sophisticated methods for tasks such as link

prediction and semi-supervised classification [PARS14, KW17, SKB+18, HYL17, ZC18], but

these methods are developed in isolation of downstream optimization tasks. Most current

solutions use a two-stage approach which first trains a model using a standard loss and

then plugs the model’s predictions into an optimization algorithm ([YG12, BAC16, BSBS18,
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BCP+16, TWL+16]). However, predictions which minimize a standard loss function (e.g.,

cross-entropy) may be suboptimal for specific optimization tasks, especially in difficult

settings where even the best model is imperfect.

A preferable approach is to incorporate the downstream optimization problem into the

training of the machine learning model. A great deal of recent work takes a pure end-to-end

approach where a neural network is trained to predict a solution to the optimization problem

using supervised or reinforcement learning [VFJ15, KDZ+17, BPL+16, KvHW19]. However,

this often requires a large amount of data and results in suboptimal performance because the

network needs to discover algorithmic structure entirely from scratch. Between the extremes

of an entirely two stage approach and pure end-to-end architectures, decision-focused learning

[DAK17, WDT19] embeds a solver for the optimization problem as a differentiable layer

within a learned system. This allows the model to train using the downstream performance

that it induces as the loss, while leveraging prior algorithmic knowledge for optimization.

The downside is that this approach requires manual effort to develop a differentiable solver

for each particular problem and often results in cumbersome systems that must, e.g, call a

quadratic programming solver every forward pass.

We propose a new approach that gets the best of both worlds: incorporate a solver for a

simpler optimization problem as a differentiable layer, and then learn a representation that

maps the (harder) problem of interest onto an instance of the simpler problem. Compared

to earlier approaches to decision-focused learning, this places more emphasis on the rep-

resentation learning component of the system and simplifies the optimization component.

However, compared to pure end-to-end approaches, we only need to learn the reduction to

the simpler problem instead of the entire algorithm.

In this work, we instantiate the simpler problem as a differentiable version of k-means

clustering. Clustering is motivated by the observation that graph neural networks embed

nodes into a continuous space, allowing us to approximate optimization over the discrete

graph with optimization in continuous embedding space. We then interpret the cluster

assignments as a solution to the discrete problem. We instantiate this approach for two
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classes of optimization problems: those that require partitioning the graph (e.g., community

detection or maxcut), and those that require selecting a subset of K nodes (facility location,

influence maximization, immunization, etc). We don’t claim that clustering is the right

algorithmic structure for all tasks, but it is sufficient for many problems as shown in this

chapter.

In short, we make three contributions. First, we introduce a general framework for

integrating graph learning and optimization, with a simpler optimization problem in

continuous space as a proxy for the more complex discrete problem. Second, we show

how to differentiate through the clustering layer, allowing it to be used in deep learning

systems. Third, we show experimental improvements over both two-stage baselines as well

as alternate end-to-end approaches on a range of example domains.

10.1 Related work

We build on a recent work on decision-focused learning [DAK17, WDT19, DSB+19], which

includes a solver for an optimization problem into training in order to improve performance

on a downstream decision problem. A related line of work develops and analyzes effective

surrogate loss functions for predict-then-optimize problems [EG17, BEGT19]. Some work in

structured prediction also integrates differentiable solvers for discrete problems (e.g., image

segmentation [DK17] or time series alignment [MB18]). Our work differs in two ways. First,

we tackle more difficult optimization problems. Previous work mostly focuses on convex

problems [DAK17] or discrete problems with near-lossless convex relations [WDT19, DK17].

We focus on highly combinatorial problems where the methods of choice are hand-designed

discrete algorithms. Second, in response to this difficulty, we differ methodologically in

that we do not attempt to include a solver for the exact optimization problem at hand (or

a close relaxation of it). Instead, we include a more generic algorithmic skeleton that is

automatically finetuned to the optimization problem at hand.

There is also recent interest in training neural networks to solve combinatorial optimiza-

tion problems [VFJ15, KDZ+17, BPL+16, KvHW19]. While we focus mostly on combining
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graph learning with optimization, our model can also be trained just to solve an opti-

mization problem given complete information about the input. The main methodological

difference is that we include more structure via a differentiable k-means layer instead of

using more generic tools (e.g., feed-forward or attention layers). Another difference is that

prior work mostly trains via reinforcement learning. By contrast, we use a differentiable

approximation to the objective which removes the need for a policy gradient estimator.

This is a benefit of our architecture, in which the final decision is fully differentiable in

terms of the model parameters instead of requiring non-differentiable selection steps (as

in [KDZ+17, BPL+16, KvHW19]). We give our end-to-end baseline (“GCN-e2e") the same

advantage by training it with the same differentiable decision loss as our own model instead

of forcing it to use noisier policy gradient estimates.

Finally, some work uses deep architectures as a part of a clustering algorithm [TGC+14,

LUZ17, GGLY17, SSL+18, NHG+19], or includes a clustering step as a component of a deep

network [GRB+16, GvSS17, YYM+18]. While some techniques are similar, the overall task

we address and framework we propose are entirely distinct. Our aim is not to cluster

a Euclidean dataset (as in [TGC+14, LUZ17, GGLY17, SSL+18]), or to solve perceptual

grouping problems (as in [GRB+16, GvSS17]). Rather, we propose an approach for graph

optimization problems. Perhaps the closest of this work is Neural EM [GvSS17], which

uses an unrolled EM algorithm to learn representations of visual objects. Rather than using

EM to infer representations for objects, we use k-means in graph embedding space to solve

an optimization problem. There is also some work which uses deep networks for graph

clustering [XGF16, YCH+16]. However, none of this work includes an explicit clustering

algorithm in the network, and none consider our goal of integrating graph learning and

optimization.

10.2 Setting

We consider settings that combine learning and optimization. The input is a graph G =

(V, E), which is in some way partially observed. We will formalize our problem in terms of
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Figure 10.1: Top: ClusterNet, our proposed system. Bottom: a typical two-stage approach.

link prediction as an example, but our framework applies to other common graph learning

problems (e.g., semi-supervised classification). In link prediction, the graph is not entirely

known; instead, we observe only training edges Etrain ⊂ E. Let A denote the adjacency

matrix of the graph and Atrain denote the adjacency matrix with only the training edges.

The learning task is to predict A from Atrain. In domains we consider, the motivation for

performing link prediction, is to solve a decision problem for which the objective depends

on the full graph. Specifically, we have a decision variable x, objective function f (x, A), and

a feasible set X . We aim to solve the optimization problem

max
x∈X

f (x, A). (10.1)

However, A is unobserved. We can also consider an inductive setting in which we observe

graphs A1, ..., Am as training examples and then seek to predict edges for a partially observed

graph from the same distribution. The most common approach to either setting is to train

a model to reconstruct A from Atrain using a standard loss function (e.g., cross-entropy),

producing an estimate Â. The two-stage approach plugs Â into an optimization algorithm

for Problem 10.1, maximizing f (x, Â).

We propose end-to-end models which map from Atrain directly to a feasible decision x.

The model will be trained to maximize f (x, Atrain), i.e., the quality of its decision evaluated
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on the training data (instead of a loss `(Â, Atrain) that measures purely predictive accuracy).

One approach is to “learn away" the problem by training a standard model (e.g., a GCN)

to map directly from Atrain to x. However, this forces the model to entirely rediscover

algorithmic concepts, while two-stage methods are able to exploit highly sophisticated

optimization methods. We propose an alternative that embeds algorithmic structure into

the learned model, getting the best of both worlds.

10.3 Approach: ClusterNet

Our proposed ClusterNet system (Figure 1) merges two differentiable components into

a system that is trained end-to-end. First, a graph embedding layer which uses Atrain and

any node features to embed the nodes of the graph into Rp. In our experiments, we use

GCNs [KW17]. Second, a layer that performs differentiable optimization. This layer takes

the continuous-space embeddings as input and uses them to produce a solution x to the

graph optimization problem. Specifically, we propose to use a layer that implements a

differentiable version of K-means clustering. This layer produces a soft assignment of the

nodes to clusters, along with the cluster centers in embedding space.

The intuition is that cluster assignments can be interpreted as the solution to many

common graph optimization problems. For instance, in community detection we can

interpret the cluster assignments as assigning the nodes to communities. Or, in maxcut, we

can use two clusters to assign nodes to either side of the cut. Another example is maximum

coverage and related problems, where we attempt to select a set of K nodes which cover

(are neighbors to) as many other nodes as possible. This problem can be approximated by

clustering the nodes into K components and choosing nodes whose embedding is close to

the center of each cluster. We do not claim that any of these problems is exactly reducible

to K-means. Rather, the idea is that including K-means as a layer in the network provides

a useful inductive bias. This algorithmic structure can be fine-tuned to specific problems

by training the first component, which produces the embeddings, so that the learned

representations induce clusterings with high objective value for the underlying downstream
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optimization task. We now explain the optimization layer of our system in greater detail.

We start by detailing the forward and the backward pass for the clustering procedure,

and then explain how the cluster assignments can be interpreted as solutions to the graph

optimization problem.

10.3.1 Forward pass

Let xj denote the embedding of node j and µk denote the center of cluster k. rjk denotes

the degree to which node j is assigned to cluster k. In traditional K-means, this is a binary

quantity, but we will relax it to a fractional value such that ∑k rjk = 1 for all j. Specifically,

we take rjk =
exp(−β||xj−µk ||)

∑` exp(−β||xj−µ`||) , which is a soft-min assignment of each point to the cluster

centers based on distance. While our architecture can be used with any norm || · ||, we

use the negative cosine similarity due to its strong empirical performance. β is an inverse-

temperature hyperparameter; taking β→ ∞ recovers the standard k-means assignment. We

can optimize the cluster centers via an iterative process analogous to the typical k-means

updates by alternately setting

µk =
∑j rjkxj

∑j rjk
∀k = 1...K rjk =

exp(−β||xj − µk||)
∑` exp(−β||xj − µ`||)

∀k = 1...K, j = 1...n. (10.2)

These iterates converge to a fixed point where µ remains the same between successive

updates [Mac03]. The output of the forward pass is the final pair (µ, r).

10.3.2 Backward pass

We will use the implicit function theorem to analytically differentiate through the fixed

point that the forward pass k-means iterates converge to, obtaining expressions for ∂µ
∂x and

∂r
∂x . Previous work [DAK17, WDT19] has used the implicit function theorem to differentiate

through the KKT conditions of optimization problems; here we take a more direct approach

that characterizes the update process itself. Doing so allows us to backpropagate gradients

from the decision loss to the component that produced the embeddings x. Define a function
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f : RKp → R as

fi,`(µ, x) = µ`
i −

∑j rjkx`j
∑j rjk

(10.3)

Now, (µ, x) are a fixed point of the iterates if f (µ, x) = 0. Applying the implicit function

theorem yields that ∂µ
∂x = −

[
∂ f (µ,x)

∂µ

]−1 ∂ f (µ,x)
∂x , from which ∂r

∂x can be easily obtained via the

chain rule.

Exact backward pass: We now examine the process of calculating ∂µ
∂x . Both ∂ f (µ,x)

∂x and
∂ f (µ,x)

∂µ can be easily calculated in closed form (see appendix). Computing the former requires

time O(nKp2). Computing the latter requires O(npK2) time, after which it must be inverted

(or else iterative methods must be used to compute the product with its inverse). This

requires time O(K3 p3) since it is a matrix of size (Kp)× (Kp). While the exact backward

pass may be feasible for some problems, it quickly becomes burdensome for large instances.

We now propose a fast approximation.

Approximate backward pass: We start from the observation that ∂ f
∂µ will often be

dominated by its diagonal terms (the identity matrix). The off-diagonal entries capture the

extent to which updates to one entry of µ indirectly impact other entries via changes to the

cluster assignments r. However, when the cluster assignments are relatively firm, r will not

be highly sensitive to small changes to the cluster centers. We find to be typical empirically,

especially since the optimal choice of the parameter β (which controls the hardness of the

cluster assignments) is typically fairly high. Under these conditions, we can approximate ∂ f
∂µ

by its diagonal, ∂ f
∂µ ≈ I. This in turn gives ∂µ

∂x ≈ −
∂ f
∂x .

We can formally justify this approximation when the clusters are relatively balanced and

well-separated. More precisely, define c(j) = arg maxi rji to be the closest cluster to point j.

Proposition 1 (proved in the appendix) shows that the quality of the diagonal approximation

improves exponentially quickly in the product of two terms: β, the hardness of the cluster

assignments, and δ, which measures how well separated the clusters are. α (defined below)

measures the balance of the cluster sizes. We assume for convenience that the input is scaled

so ||xj||1 ≤ 1 ∀j.
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Theorem 23. Suppose that for all points j, ||xj − µi|| − ||xj − µc(j)|| ≥ δ for all i 6= c(j) and

that for all clusters i, ∑n
j=1 rji ≥ αn. Moreover, suppose that βδ > log 2βK2

α . Then,
∣∣∣∣∣∣ ∂ f

∂µ − I
∣∣∣∣∣∣

1
≤

exp(−δβ)
(

K2β
1
2 α−K2β exp(−δβ)

)
where || · ||1 is the operator 1-norm.

We now show that the approximate gradient obtained by taking ∂ f
∂µ = I can be calculated

by unrolling a single iteration of the forward-pass updates from Equation 10.2 at convergence.

Examining Equation 10.3, we see that the first term (µ`
i ) is constant with respect to x, since

here µ is a fixed value. Hence,

−∂ fk

∂x
=

∂

∂x
∑j rjkxj

∑j rjk

which is just the update equation for µk. Since the forward-pass updates are written

entirely in terms of differentiable functions, we can automatically compute the approximate

backward pass with respect to x (i.e., compute products with our approximations to ∂µ
∂x and

∂r
∂x ) by applying standard autodifferentiation tools to the final update of the forward pass.

Compared to computing the exact analytical gradients, this avoids the need to explicitly

reason about or invert ∂ f
∂µ . The final iteration (the one which is differentiated through)

requires time O(npK), linear in the size of the data.

Compared to differentiating by unrolling the entire sequence of updates in the computa-

tional graph (as has been suggested for other problems [Dom12, ADG+16, ZJRP+15]), our

approach has two key advantages. First, it avoids storing the entire history of updates and

backpropagating through all of them. The runtime for our approximation is independent

of the number of updates needed to reach convergence. Second, we can in fact use entirely

non-differentiable operations to arrive at the fixed point, e.g., heuristics for the K-means problem,

stochastic methods which only examine subsets of the data, etc. This allows the forward

pass to scale to larger datasets since we can use the best algorithmic tools available, not just

those that can be explicitly encoded in the autodifferentiation tool’s computational graph.
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10.3.3 Obtaining solutions to the optimization problem

Having obtained the cluster assignments r, along with the centers µ, in a differentiable

manner, we need a way to (1) differentiably interpret the clustering as a soft solution to

the optimization problem, (2) differentiate a relaxation of the objective value of the graph

optimization problem in terms of that solution, and then (3) round to a discrete solution at

test time. We give a generic means of accomplishing these three steps for two broad classes

of problems: those that involve partitioning the graph into K disjoint components, and those

that that involve selecting a subset of K nodes.

Partitioning: (1) We can naturally interpret the cluster assignments r as a soft partition-

ing of the graph. (2) One generic continuous objective function (defined on soft partitions)

follows from the random process of assigning each node j to a partition with probabilities

given by rj, repeating this process independently across all nodes. This gives the expected

training decision loss ` = Erhard∼r[ f (rhard, Atrain)], where rhard ∼ r denotes this random

assignment. ` is now differentiable in terms of r, and can be computed in closed form

via standard autodifferentiation tools for many problems of interest (see Section 10.4). We

remark that when the expectation is not available in closed form, our approach could still be

applied by repeatedly sampling rhard ∼ r and using a policy gradient estimator to compute

the gradient of the resulting objective. (3) At test time, we simply apply a hard maximum to

r to obtain each node’s assignment.

Subset selection: (1) Here, it is less obvious how to obtain a subset of K nodes from the

cluster assignments. Our continuous solution will be a vector x, 0 ≤ x ≤ 1, where ||x||1 = K.

Intuitively, xj is the probability of including xj in the solution. Our approach obtains xj by

placing greater probability mass on nodes that are near the cluster centers. Specifically, each

center µi is endowed with one unit of probability mass, which it allocates to the points x as

aij = softmin(η||x− µi||)j. The total probability allocated to node j is bj = ∑K
i=1 aij. Since we

may have bj > 1, we pass b through a sigmoid function to cap the entries at 1; specifically,

we take x = 2 ∗ σ(γb)− 0.5 where γ is a tunable parameter. If the resulting x exceeds the

budget constraint (||x||1 > K), we instead output Kx
||x||1 to ensure a feasible solution.
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Table 10.1: Performance on the community detection task

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.54 0.55 0.29 0.49 0.30 0.72 0.73 0.52 0.58 0.76
GCN-e2e 0.16 0.02 0.13 0.12 0.13 0.19 0.03 0.16 0.20 0.23
Train-CNM 0.20 0.42 0.09 0.01 0.14 0.08 0.34 0.05 0.57 0.77
Train-Newman 0.09 0.15 0.15 0.15 0.08 0.20 0.23 0.29 0.30 0.55
Train-SC 0.03 0.02 0.03 0.23 0.19 0.09 0.05 0.06 0.49 0.61
GCN-2stage-CNM 0.17 0.21 0.18 0.28 0.13 - - - - -
GCN-2stage-Newman 0.00 0.00 0.00 0.14 0.02 - - - - -
GCN-2stage-SC 0.14 0.16 0.04 0.31 0.25 - - - - -

Table 10.2: Performance on the facility location task.

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 10 14 6 6 4 9 14 6 5 3
GCN-e2e 12 15 8 6 5 11 14 7 6 5
Train-greedy 14 16 8 8 6 9 14 7 6 5
Train-gonzalez 12 17 8 6 6 10 15 7 7 3
GCN-2Stage-greedy 14 17 8 7 6 - - - - -
GCN-2Stage-gonzalez 13 17 8 6 6 - - - - -

(2) We interpret this solution in terms of the objective similarly as above. Specifically, we

consider the result of drawing a discrete solution xhard ∼ x where every node j is included

(i.e., set to 1) independently with probability xj from the end of step (1). The training

objective is then Exhard∼x[ f (xhard, Atrain)]. For many problems, this can again be computed

and differentiated through in closed form (see Section 10.4).

(3) At test time, we need a feasible discrete vector x; note that independently rounding

the individual entries may produce a vector with more than K ones. Here, we apply a

fairly generic approach based on pipage rounding [AS04], a randomized rounding scheme

which has been applied to many problems (particularly those with submodular objectives).

Pipage rounding can be implemented to produce a random feasible solution in time O(n)

[KLHK17]; in practice we round several times and take the solution with the best decision

loss on the observed edges. While pipage rounding has theoretical guarantees only for

specific classes of functions, we find it to work well even in other domains (e.g., facility

location). However, more domain-specific rounding methods can be applied if available.
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10.4 Experimental results

We now show experiments on domains that combine link prediction with optimization.

Learning problem: In link prediction, we observe a partial graph and aim to infer which

unobserved edges are present. In each of the experiments, we hold out 60% of the edges

in the graph, with 40% observed during training. We used a graph dataset which is not

included in our results to set our method’s hyperparameters, which were kept constant

across datasets (see appendix for details). The learning task is to use the training edges to

predict whether the remaining edges are present, after which we will solve an optimization

problem on the predicted graph. The objective is to find a solution with high objective value

measured on the entire graph, not just the training edges.

Optimization problems: We consider two optimization tasks, one from each of the

broad classes introduced above. First, community detection aims to partition the nodes of

the graph into K distinct subgroups which are dense internally, but with few edges across

groups. Formally, the objective is to find a partition maximizing the modularity [New06b],

defined as

Q(r) =
1

2m ∑
u,v∈V

K

∑
k=1

[
Auv −

dudv

2m

]
rukrvk.

Here, dv is the degree of node v, and rvk is 1 if node v is assigned to community k and

zero otherwise. This measures the number of edges within communities compared to

the expected number if edges were placed randomly. Our clustering module has one

cluster for each of the K communities. Defining B to be the modularity matrix with entries

Buv = Auv− dudv
2m , our training objective (the expected value of a partition sampled according

to r) is 1
2m Tr

[
r>Btrainr

]
.

Second, minmax facility location, where the problem is to select a subset of K nodes

from the graph, minimizing the maximum distance from any node to a facility (selected

node). Letting d(v, S) be the shortest path length from a vertex v to a set of vertices S,

the objective is f (S) = min|S|≤k maxv∈V d(v, S). To obtain the training loss, we take two
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steps. First, we replace d(v, S) by ES∼x[d(v, S)], where S ∼ x denotes drawing a set from

the product distribution with marginals x. This can easily be calculated in closed form

[KLHK17]. Second, we replace the min with a softmin.

Baseline learning methods: We instantiate ClusterNet using a 2-layer GCN for node

embeddings, followed by a clustering layer. We compare to three families of baselines. First,

GCN-2stage, the two-stage approach which first trains a model for link prediction, and then

inputs the predicted graph into an optimization algorithm. For link prediction, we use the

GCN-based system of [SKB+18] (we also adopt their training procedure, including negative

sampling and edge dropout). For the optimization algorithms, we use standard approaches

for each domain, outlined below. Second, “train", which runs each optimization algorithm

only on the observed training subgraph (without attempting any link prediction). Third,

GCN-e2e, an end-to-end approach which does not include explicit algorithm structure. We

train a GCN-based network to directly predict the final decision variable (r or x) using the

same training objectives as our own model. Empirically, we observed best performance

with a 2-layer GCN. This baseline allows us to isolate the benefits of including algorithmic

structure.

Baseline optimization approaches: In each domain, we compare to expert-designed

optimization algorithms found in the literature. In community detection, we compare to

“CNM" [CNM04], an agglomerative approach, “Newman", an approach that recursively

partitions the graph [New06a], and “SC", which performs spectral clustering [VL07] on the

modularity matrix. In facility location, we compare to “greedy", the common heuristic of

iteratively selecting the point with greatest marginal improvement in objective value, and

“gonzalez" [Gon85], an algorithm which iteratively selects the node furthest from the current

set. “gonzalez" attains the optimal 2-approximation for this problem (note that the minmax

facility location objective is non-submodular, ruling out the usual (1− 1/e)-approximation).

Datasets: We use several standard graph datasets: cora [SNB+08] (a citation network

with 2,708 nodes), citeseer [SNB+08] (a citation network with 3,327 nodes), protein [Col17c]

(a protein interaction network with 3,133 nodes), adol [Col17a] (an adolescent social network
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with 2,539 vertices), and fb [Col17b, LM12] (an online social network with 2,888 nodes).

For facility location, we use the largest connected component of the graph (since otherwise

distances may be infinite). Cora and citeseer have node features (based on a bag-of-words

representation of the document), which were given to all GCN-based methods. For the other

datasets, we generated unsupervised node2vec features [GL16] using the training edges.

10.4.1 Results on single graphs

We start out with results for the combined link prediction and optimization problem. Table

10.1 shows the objective value obtained by each approach on the full graph for community

detection, with Table 10.2 showing facility location. We focus first on the “Learning +

Optimization" column which shows the combined link prediction/optimization task. We

use K = 5 clusters; K = 10 is very similar and may be found in the appendix. ClusterNet

outperforms the baselines in nearly all cases, often substantially. GCN-e2e learns to produce

nontrivial solutions, often rivaling the other baseline methods. However, the explicit

structure used by our approach ClusterNet results in much higher performance.

Interestingly, the two stage approach sometimes performs worse than the train-only

baseline which optimizes just based on the training edges (without attempting to learn). This

indicates that approaches which attempt to accurately reconstruct the graph can sometimes

miss qualities which are important for optimization, and in the worst case may simply add

noise that overwhelms the signal in the training edges. In order to confirm that the two-stage

method learned to make meaningful predictions, in the appendix we give AUC values for

each dataset. The average AUC value is 0.7584, indicating that the two-stage model does

learn to make nontrivial predictions. However, the small amount of training data (only

40% of edges are observed) prevents it from perfectly reconstructing the true graph. This

drives home the point that decision-focused learning methods such as ClusterNet can offer

substantial benefits when highly accurate predictions are out of reach even for sophisticated

learning methods.

We next examine an optimization-only task where the entire graph is available as
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Table 10.3: Inductive results. “%" is the fraction of test instances for which a method attains top performance
(including ties). “Finetune" methods are excluded from this in the “No finetune" section.

Community detection Facility location

synthetic pubmed synthetic pubmed

No finetune Avg. % Avg. % No finetune Avg. % Avg. %

ClusterNet 0.57 26/30 0.30 7/8 ClusterNet 7.90 25/30 7.88 3/8
GCN-e2e 0.26 0/30 0.01 0/8 GCN-e2e 8.63 11/30 8.62 1/8
Train-CNM 0.14 0/30 0.16 1/8 Train-greedy 14.00 0/30 9.50 1/8
Train-Newman 0.24 0/30 0.17 0/8 Train-gonzalez 10.30 2/30 9.38 1/8
Train-SC 0.16 0/30 0.04 0/8 2Stage-greedy 9.60 3/30 10.00 0/8
2Stage-CNM 0.51 0/30 0.24 0/8 2Stage-gonz. 10.00 2/30 6.88 5/8
2Stage-Newman 0.01 0/30 0.01 0/8 ClstrNet-1train 7.93 12/30 7.88 2/8
2Stage-SC 0.52 4/30 0.15 0/8
ClstrNet-1train 0.55 0/30 0.25 0/8

Finetune Finetune

ClstrNet-ft 0.60 20/30 0.40 2/8 ClstrNet-ft 8.08 12/30 8.01 3/8
ClstrNet-ft-only 0.60 10/30 0.42 6/8 ClstrNet-ft-only 7.84 16/30 7.76 4/8

input (the “Optimization" column of Tables 10.1 and Table 10.2). This tests ClusterNet’s

ability to learn to solve combinatorial optimization problems compared to expert-designed

algorithms, even when there is no partial information or learning problem in play. We find

that ClusterNet is highly competitive, meeting and frequently exceeding the baselines. It is

particularly effective for community detection, where we observe large (> 3x) improvements

compared to the best baseline on some datasets. At facility location, our method always

at least ties the baselines, and frequently improves on them. These experiments provide

evidence that our approach, which is automatically specialized during training to optimize

on a given graph, can rival and exceed hand-designed algorithms from the literature. The

alternate learning approach, GCN-e2e, which is an end-to-end approach that tries to learn to

predicts optimization solutions directly from the node features, at best ties the baselines and

typically underperforms. This underscores the benefit of including algorithmic structure as

a part of the end-to-end architecture.

10.4.2 Generalizing across graphs

Next, we investigate whether our method can learn generalizable strategies for optimization:

can we train the model on one set of graphs drawn from some distribution and then apply
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it to unseen graphs? We consider two graph distributions. First, a synthetic generator

introduced by [WOdlHT18], which is based on the spatial preferential attachment model

[Bar11] (details in the appendix). We use 20 training graphs, 10 validation, and 30 test.

Second, a dataset obtained by splitting the pubmed graph into 20 components using metis

[KK98]. We fix 10 training graphs, 2 validation, and 8 test. At test time, only 40% of the

edges in each graph are revealed, matching the “Learning + optimization" setup above.

Table 10.3 shows the results. To start out, we do not conduct any fine-tuning to the test

graphs, evaluating entirely the generalizability of the learned representations. ClusterNet

outperforms all baseline methods on all tasks, except for facility location on pubmed where

it places second. We conclude that the learned model successfully generalizes to completely

unseen graphs. We next investigate (in the “finetune" section of Table 10.3) whether

ClusterNet’s performance can be further improved by fine-tuning to the 40% of observed

edges for each test graph (treating each test graph as an instance of the link prediction

problem from Section 10.4.1, but initializing with the parameters of the model learned over

the training graphs). We see that ClusterNet’s performance typically improves, indicating

that fine-tuning can allow us to extract additional gains if extra training time is available.

Interestingly, only fine-tuning (not using the training graphs at all) yields similar perfor-

mance (the row “ClstrNet-ft-only"). While our earlier results show that ClusterNet can

learn generalizable strategies, doing so may not be necessary when there is the opportunity

to fine-tune. This allows a trade-off between quality and runtime: without fine-tuning,

applying our method at test time requires just a single forward pass, which is extremely

efficient. If additional computational cost at test time is acceptable, fine-tuning can be used

to improve performance. Complete runtimes for all methods are shown in the appendix.

ClusterNet’s forward pass (i.e., no fine-tuning) is extremely efficient, requiring at most 0.23

seconds on the largest network, and is always faster than the baselines (on identical hardware).

Fine-tuning requires longer, on par with the slowest baseline.

We lastly investigate the reason why pretraining provides little to no improvement over

only fine-tuning. Essentially, we find that ClusterNet is extremely sample-efficient: using
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only a single training graph results in nearly as good performance as the full training set

(and still better than all of the baselines), as seen in the “ClstrNet-1train" row of Table

10.3. That is, ClusterNet is capable of learning optimization strategies that generalize with strong

performance to completely unseen graphs after observing only a single training example. This

underscores the benefits of including algorithmic structure as a part of the architecture,

which guides the model towards learning meaningful strategies.

10.5 Conclusion

When machine learning is used to inform decision-making, it is often necessary to incor-

porate the downstream optimization problem into training. Here, we proposed a new

approach to this decision-focused learning problem: include a differentiable solver for a

simple proxy to the true, difficult optimization problem and learn a representation that

maps the difficult problem to the simpler one. This representation is trained in an entirely

automatic way, using the solution quality for the true downstream problem as the loss

function. We find that this “middle path" for including algorithmic structure in learning

improves over both two-stage approaches, which separate learning and optimization en-

tirely, and purely end-to-end approaches, which use learning to directly predict the optimal

solution. Here, we instantiated this framework for a class of graph optimization problems.

We hope that future work will explore such ideas for other families of problems, paving the

way for flexible and efficient optimization-based structure in deep learning.
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Chapter 11

Learning to complement humans

Systems developed via machine learning (ML) are increasingly competent at performing

tasks that have traditionally required human expertise, with emerging applications in

medicine, law, transportation, scientific discovery, and other disciplines (e.g., [EKN+17,

CEW+18, MP19]). To date, engineers have constructed models by optimizing model perfor-

mance in isolation rather than seeking richer optimizations that consider human-machine

teamwork.

Optimizing ML performance in isolation overlooks the common situation where human

expertise can contribute complementary perspectives, despite humans having their own

limitations, including systematic biases [TK74]. We introduce methods for optimizing team

performance, where machines take on some parts of the task and humans others. In an

ideal world, the machine would be able to handle all instances itself. For complex domains

though, this rarely holds in practice, whether due to limited data or model capacity, outliers,

superior perceptual or reasoning abilities of people on a given task, or evidence or context

available only to humans. When perfect accuracy is unattainable, the machine should

focus its limited capacity on regions of the space where it offers the most benefit (e.g., on

cases that are challenging for humans), while pursuing human expertise to handle others.

We develop methods aimed at training the ML model to complement the strengths of the

human, accounting for the cost of querying an expert. While human-machine teamwork can
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Figure 11.1: Illustration of task and proposed approaches.

take many forms, we focus here on settings where a machine takes on the tasks of deciding

which instances require human input and then fusing machine and human judgments.

Prior work includes systems that determine when to consult humans [HP07, KHH12,

RBC+19]. However, the predictive models are still trained to maximize their own, solitary

performance, rather than to leverage the distinctive strengths of machines and humans.

The latter requires a shift in the learning objective so as to optimize team performance

via instance-sensitive decisions about when to seek human input. To our knowledge, the

methods we present are the first to optimize human-AI teams by jointly training ML systems

together with policies for allocating tasks to human experts versus machines. We make four

contributions:

First, we propose a family of approaches to training an ML system for human-machine

complementarity as schematized in Figure 11.1. The run-time system combines machine

predictions with human input, which may come at additional cost. During training, we

use logged human responses to the task to simulate queries to a human. We study both
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discriminative and decision-theoretic approaches to optimizing model performance, taking

the complementarity of humans and machines into consideration. A baseline approach in

either family would first construct an ML model to predict the answer to a given task and

then build a policy for deciding when to query the human, taking the predictive model

as fixed. We introduce the first generic procedures that operate end-to-end, focused on

team performance. With these approaches, we jointly optimize the predictive model and the

query policy for team performance, accounting for human-machine complementarities. In

the discriminative setting, we introduce a combined loss function that uses a soft relaxation

of the query policy for training, along with a technique for making discrete query decisions

at run time. In the decision-theoretic setting, we introduce a differentiable surrogate for

value of information (VOI) calculations, which allows joint training of the predictive model

and the VOI-based query policy through backpropagation. In both cases, joint training

focuses the predictive model on instances where the human will not be queried, amplifying

complementarity.

Second, we demonstrate the benefits of optimizing for team performance in human-

machine teams for two real-world domains of societal importance: scientific discovery (a

galaxy classification task) and medical diagnosis (detection of breast cancer metastasis).

Via comparative studies, we highlight the importance of guiding learning to optimize the

performance of human-machine teams.

Third, we pursue experimental insights about when and how complementarity-focused

training provides benefits. We find evidence for two conclusions: First, training for comple-

mentarity is most important when the ML model has limited capacity, forcing it to pick parts

of the task to focus on. This suggests that an emphasis on team performance is particularly

necessary for difficult tasks that machines cannot perfectly master on their own. Second,

training for complementarity has larger benefits when there is an asymmetric cost to errors

(e.g., false negatives are more costly than false positives). The need to prioritize among

potential errors increases the returns of optimizing for team utility.

Fourth, we analyze how our methods distribute instances to the human and machine and

218



how these allocations reflect differences in relative capabilities. We find that humans and

machines may make qualitatively different kinds of errors. Moreover, the errors made by

the ML model change under joint training as the model places more emphasis on instances

that are difficult for humans. Via joint training, human and machine errors become different

in structured ways that can be leveraged by the methods to improve team performance.

11.1 Related Work

Previous work shows that human-machine teams can be more effective than either indi-

vidually [HP07, KHH12], including for medical domains [WKG+16, RBC+19]. However, in

some others [TAIK18, ZLB20], potential complementarity has been difficult to leverage.

Sharing our motivation for developing techniques that harness human-machine comple-

mentarity, the work by [RBC+19] and [DKGGR20] study when a model should outsource a

given instance to a human. [RBC+19] is most closely related to our fixed decision-theoretic

algorithm; their approach considers predictive variance for the human and machine at each

point to allocate human effort. However, the ML model is always fixed, instead of being

trained for complementarity. [DKGGR20] propose a method to select the parameters of a

ridge regression model jointly with a set of training instances to allocate to the human. Our

work differs in three important ways: (i) they do not train a query policy to allocate new

instances at run time, (ii) our methods apply to arbitrary differentiable models (not just

ridge regression), (iii) we provide a characterization of why some methods are more or less

effective at leveraging complementarity.

Other related work addresses the complementary question of designing ML models as an

aid for a human who is charged with making decisions [GHEG19, GC19, HRB+19, LRG+18].

Some of this work emphasizes the need for ML models to account for human reasoning,

in particular for humans to learn when to trust the ML model [BNK+19a, BNK+19b], but

does not optimize the model for complementarity. We focus on cases were the ML system

decides which instances require human input.
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11.2 Problem Formulation

We formalize the problem of optimizing human-AI teamwork for predictive tasks. We start

with the standard supervised learning setting, predicting labels y ∈ Y from features x ∈ X .

We focus on multiclass classification, where Y is a discrete set, but our methods apply to

regression with minor modifications. As is typical, we train a model m with parameters θ,

which produces a prediction ŷ = mθ(x). The difference is that each instance may also be

labeled by a human. Our training data contains instances {(x, y, h)}N
1 ∼ P where h ∈ Y is a

human’s prediction and P is an (unknown) joint distribution. The machine must decide, for

each instance, whether to predict on its own or first consult a human expert.

Specifically, the machine learning model first sees x and then decides whether to pay

a cost c to observe h. qθ(x) denotes the query policy, which outputs 1 when the human

is queried and 0 otherwise. The model makes a prediction ŷ, which may depend on h

if qθ(x) = 1. The team’s utility is u(y, ŷ) if the human is not queried, and u(y, ŷ)− c if

they are. One choice for the utility is u(y, ŷ) = 1[y = ŷ] (predictive accuracy), but our

framework extends easily to asymmetric weightings of different errors. We aim to maximize

out-of-sample utility,

E
(x,y,h)∼P

[
qθ(x) (u(y, mθ(x, h))− c) (11.1)

+(1− qθ(x)) (u(y, mθ(x)))
]
.

The first term gives the team utility when the human is queried, and the second when

they are not. Conventional supervised learning targets only the second term; our formulation

includes the query decision, and the impact of the additional information provided by the

human, on the team’s overall accuracy.
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11.3 Approach

A standard approach to optimizing for human-machine teamwork would first train the

model in isolation m to predict the labels y given x. Then, m is taken as fixed when

constructing the query policy q (as, e.g., in [RBC+19]). We propose an alternate approach:

joint training that considers explicitly the relative strengths of the human and machine.

We introduce methods for both discriminative and decision-theoretic approaches, and now

introduce each family in more detail.

11.3.1 Discriminative Approaches

Discriminative approaches learn functions for m and q which directly map from features to

decisions, without building intermediate probabilistic models for the different components

of the system. We first introduce a baseline “fixed" method for training a discriminative

system and then propose a means to jointly train the model and query policy together for

complementarity with people.

Fixed Discriminative Approach

Traditional fixed discriminative approaches train a model m in isolation to perform the task,

making the assumption that there is no ability to query the human. That is, we train m to

optimize E(x,y)∼P[u(y, mθ(x))] using any number of well-established methods. Then, taking

m as fixed, we construct a query policy q by optimizing Equation 11.1.

Joint Discriminative Approach

In distinction to the fixed approach, we present a joint discriminative method that trains

the ML model mθ end-to-end with the query policy qθ so that mθ can prioritize instances

allocated by qθ to the machine. The goal is to optimize a training surrogate for the team

utility in Equation 11.1. In the notation, mθ(x) denotes the distribution over classes output

by the model, and h gives the one-hot encoding of the human responses.
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We propose a differentiable surrogate for Equation 11.1, which can be optimized via

stochastic gradient descent whenever the models are themselves differentiable (e.g., neural

networks). During training, we will allow qθ(x) to take continuous values. This soft

relaxation both ensures differentiability and speeds learning by propagating gradient

information for both cases (querying and not querying). The most direct relaxation for

Equation 11.1 is

qθ(x)`(y, mθ(x, h)) + (1− qθ(x))`(y, mθ(x)) + cqθ(x)

where ` is any standard loss, which may be weighted to capture asymmetries in the utility

u. This replaces the potentially discontinuous u with a differentiable loss ` defined on

soft predictions (probability distributions), along with a penalty scaling c by the query

probability qθ(x). In experiments, this direct relaxation often produced unstable training;

intuitively, the predictions and query policy may be spiky in some regions, giving a rapidly

changing training signal. The loss we use is

`(y, qθ(x)mθ(x, h) + (1− qθ(x))mθ(x)) + cqθ(x)

which measures the loss of a fractional prediction that combines the human and machine

outputs. The combination tends to behave more smoothly, enabling better training. A key

feature of this loss is that it allows the predictions mθ(x) to focus on instances that rely

heavily on the machine. If qθ(x) for some x is close to 1, then the loss for x depends only

weakly on mθ(x), incentivizing m to focus on instances where q is lower instead.

When the human is queried, the general formulation allows mθ(x, h) to output a pre-

diction different than the human response h. However, we observe stronger empirical

performance using the simplification mθ(x, h) = h (though training a separate model for

mθ(x, h) results in similar qualitative conclusions). Intuitively, often the correct decision after

querying is to output h, and including a separate model only adds unnecessary parameters.

For this simplified formalization, we introduce the following run-time query policy:

we need a way of converting the fractional q to a 0 or 1 decision (whether to actually

query the human). In an idealized setting where the human label was free, the run-time
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prediction would be arg max (qθ(x)h + (1− qθ(x))mθ(x)) (i.e., the highest-probability label

in the combined prediction). A naive thresholding scheme would query the human if

qθ(x) > 0.5 (or another fixed value). However, we can approximate the idealized prediction

more closely by incorporating a measure of the ML model’s confidence, max (mθ(x)).

Specifically, we query the human if

(1− qθ(x))max (mθ(x)) < qθ(x)

which results in a query if qθ(x) is sufficiently high, or the model is sufficiently uncertain.

More formally, when this condition holds, the idealized prediction must align with h since

max (qθ(x)h) > max ((1− qθ(x))mθ(x)).

11.3.2 Decision-Theoretic Approaches

A decision-theoretic approach to human-machine teams, as described in [KHH12], is to

construct probabilistic models for both the ML task and the human response. This allows a

follow-up step that calculates the expected value of information for querying the human.

Fixed Value of Information Approach

The fixed value of information (VOI) method trains three probabilistic models. pα(y|x) models

the distribution of the label given the features, pβ(h|x), the human response given the

features, and pγ(y|h, x), the label given both the features and the human response. α, β, γ

are model parameters. Each model is individually trained to fit its intended target. In

our implementation, we use neural networks trained via gradient descent, followed by a

sigmoid calibrator trained using the Platt method [Pla99, NMC05]. Calibration is necessary

for the predicted probabilities to give meaningful expected utilities.

At execution time, we use these models to estimate the value of querying the human.

The estimated expected utility of the ML model without querying the human is
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unq = max
ŷ∈Y

(
∑

y∈Y
pα(y|x)u(ŷ, y)

)

i.e., the value of the prediction with highest expected utility according to pα(y|x). Before

querying the human, we cannot know the value of h and hence the post-query distribution

pγ(y|x, h) is also unknown. However, we can estimate the expected utility by averaging over

pβ(h|x),

uq = E
h∼pβ(h|x)

[
max
ŷ∈Y

(
∑

y∈Y
pγ(y|x, h)u(ŷ, y)

)]
− c

and then query the human whenever uq > unq.

Joint Value of Information Approach

We propose a new decision-theoretic method, which we refer to as a joint VOI approach,

that optimizes the utility of the combined system end-to-end, instead of training the best

probabilistic model for each individual component. Retaining the structure of the fixed

VOI system can be viewed as an inductive bias which allows the model to start from

well-founded probabilistic reasoning and then to be fine-tuned for complementarity. To

benefit from this inductive bias, we instantiate each of the probabilistic models pα, pβ, and pγ

with a neural network followed by a Platt calibration layer, just like the fixed VOI approach.

However, with joint VOI all of the neural network parameters are trained together via an

end-to-end loss, which is grounded in the VOI calculation. We update the calibration layer

every t steps to maintain well-calibrated probabilities.

Algorithm 13 outlines joint VOI training. We optimize a surrogate for team utility via

stochastic gradient descent, so each iteration first samples a minibatch of data points. For

each point, we simulate a differentiable VOI calculation which draws on soft versions of the

team’s utility if the human were queried (uq) and if the human were not queried (unq), along

with the cost to query. Specifically, line 4 computes unq(ŷ), the expected utility of predicting

ŷ (according to pα) when the human is not queried. Line 5 takes a softmax over all potential
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Algorithm 13 Joint VOI training

1: for T iterations do
2: Sample a minibatch B ⊆ [n]
3: for i ∈ B do
4: for ŷ ∈ Y do
5: unq(ŷ) = ∑y∈Y pα(y|xi)u(ŷ, y)
6: end for
7: unq = ∑ŷ∈Y

unq(ŷ) exp(unq(ŷ))
∑y′∈Y exp(unq(y′))

8: for ŷ ∈ Y do
9: uq(ŷ, h) = ∑y∈Y pγ(y|xi, h)u(ŷ, y)

10: end for
11: uq = ∑h pβ(h|x)∑ŷ

uq(ŷ,h) exp(uq(ŷ,h))
∑y′∈Y exp(uq(y′,h))

12: q =
exp(uq)

exp(uq)+exp(unq)

13: `i
combined = `(q pγ(·|xi, hi)

14: +(1− q)pα(·|xi)) + qc
15: end for
16: Backpropagate 1

|B| ∑i∈B `
i
combined

17: Every t iterations: update calibrators
18: end for

ŷ in order to achieve a differentiable approximation to the best achievable expected utility

without a query. Similarly, line 6 computes the expected utility uq(ŷ, h) of predicting ŷ

supposing that the human was queried and responded with h. Line 7 takes a softmax over ŷ

for each fixed h (the inner sum), and then an expectation over h ∼ pβ (the outer sum). This

approximates the expected utility of observing h and then predicting the best ŷ given the

observation. Line 8 makes a soft query decision via a softmax over unq and uq.

Using the output (query decision and prediction) of the differentiable VOI calculation,

we compute a team loss `combined, which uses the same form as in the joint discriminative

model. We average this loss over the minibatch and backpropagate it to update the predictive

models. During this process, we freeze the parameters of the calibration layers of the models.

The calibration layers are updated using the Platt procedure every t steps in order to ensure

that the model remains well-calibrated even under end-to-end training.

Compared to the fixed model, the joint model uses well-calibrated models to calculate

the expected utility of a query. However, it encourages these models to fit most carefully to

parts of the space that the are best handled by the machine, and obtains human expertise
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for others.

11.4 Experiments

We conducted experiments in two real-world domains to explore opportunities for human-

machine complementarity and methods to best leverage the complementarity.

11.4.1 Domains

We first explore a scientific discovery task from the Galaxy Zoo project. Here, citizen

scientists label images of galaxies as one of five classes to help understand the distribution

of galaxies and their evolution. We use 10,000 instances for training and 4,000 for testing.

Each instance contains visual features which previous work extracted from the dataset

[LSS+08, KHH12] for x. The human response h is the label assigned by a single volunteer

(who may make mistakes), while the ground truth y is the consensus over many (> 30)

volunteers.

We next study the medical diagnosis task of detecting breast cancer metastasis in lymph

node tissue sections from women with a history of breast cancer. We use data from the

CAMELYON16 challenge [BVVD+17]. Each instance contains a whole-slide image of a

lymph node section. Each image was labeled by an expert pathologist with unlimited time,

providing the ground truth y. It was also labeled by a panel of pathologists under realistic

time pressure whose diagnoses contain errors; we sample h from the panel responses.

The dataset consists of 127 images. There are also 270 images without panel responses,

with which we pretrain the ML models. To develop our models, we follow common practice

from high-scoring competition entries (our implementation is based on [Vek16]). We first

train a convolutional network (Inception-v3 [SVI+16]) to predict whether cancer is present in

256×256 pixel patches sampled from the larger whole-slide images. Then, we use Inception-

v3 to predict the probability of cancer in each patch, giving a probability heatmap for each

slide. We extract visual features from the heatmap (e.g., size of the largest cancer region,

eccentricity of the enclosing ellipse, etc). These features are the input x into the human-AI
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Figure 11.2: Total loss (classification error + cost of queries to human) as a function of the cost of a human
query. Top row: All approaches. Bottom row: Zooming in on decision-theoretic approaches. (a) Galaxy Zoo
(b) CAMELYON16 (c) CAMELYON16, doubling the cost of false negatives. (d) CAMELYON 16, reducing
hidden layers to 20 neurons (from 50). We omit the “human only" baseline for Galaxy Zoo since it has over
twice the loss of any other method. All differences between fixed and joint models are statistically significant
for Galaxy Zoo, and on the CAMELYON16 task for the discriminative models (Student t-test, p < 10−3).
Due to the small size of the CAMELYON16 dataset (127 samples), not all VOI comparisons are statistically
significant, but the larger differences approach significance (e.g, p < 0.15 for the point with largest difference
in each of Figures 11.2(c-d)).

task. This workflow produced the highest-scoring competition entries, ensuring we compare

using a state-of-the-art ML method.

11.4.2 Models

We compare each of the four approaches introduced earlier: fixed versus joint discriminative

and VOI models. All use neural networks with ReLU activations and dropout (p = 0.2).

Our experiments vary the number of layers and hidden units to examine the impact of

model capacity. We also show a “Human only" baseline that always queries the human and

outputs their response h.

11.4.3 Results

We first examine the performance of these methods for the two tasks. Fig 11.2 shows each

method’s total loss (combining classification error and the cost of human queries). For each

model, the dashed line shows the fixed version and the solid line denotes joint. For the

joint models, we train the model under a range of weightings of classification loss vs query

cost, and each x-axis point selects the version with lowest total loss for that cost. We show
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Table 11.1: Comparison of joint and fixed VOI models across a range of settings. “Layers" gives the number
of layers used in the predictive models, “Hidden," the number of hidden units, and “% diff.," the percentage
improvement of the joint over fixed model (given as the min, average, and max improvement in loss over costs
from 0 to 0.2).

Task Layers Hidden % diff. (min / avg / max)
GZ 1 - 21.8 / 38.9 / 73.3
GZ 2 50 2.13 / 9.02 / 14.0
GZ 2 100 -1.05 / 8.89 / 13.5
CAM. 1 - -3.10 / 4.51 /10.4
CAM. (asym.) 1 - -1.26 / 5.13 / 15.2
CAM. 2 20 0.30 / 1.82 / 2.65
CAM. (asym.) 2 20 -0.80 / 1.91 / 4.85
CAM. 2 50 0.00 / 0.03 / 2.31
CAM. (asym.) 2 50 -0.67 / 1.70 / 2.28

discriminative models with one- and two-layer networks. Because the one- and two-layer

VOI models have fairly different losses (which compresses the plots), we only show two

layers. Table 11.1 gives results for all VOI configurations.

The joint models, which optimize for complementarity, uniformly outperform or tie

their fixed counterparts. For Galaxy Zoo, joint training leads to 21-73% reduction in loss for

the one-layer VOI models and 10-15% reduction in loss for two-layer VOI. The reductions

are 10-15% and 29% for the one and two layer discriminative models respectively. For

CAMELYON16, joint training improves the one-layer discriminative model by up to 20%

and the one-layer VOI model by up to 10%. For deeper models, joint training ties the fixed

approach or makes modest improvements (around 2% reduction in loss). Next, we vary the
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Figure 11.3: Detailed analysis on Galaxy Zoo task. Left: Error rate of machine versus human models for each
class. Right: Fraction of instances in each class queried by the machine.

problem setting to explore the factors that influence the benefits of joint training. First, we
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vary the capacity of the models, as measured by the number of hidden units. Figures 11.2b

and 11.2d compare the total loss of different approaches when hidden unit sizes is reduced

from 50 to 20. Table 11.1 examines the effect of model capacity on the VOI-based approaches.

Overall, joint training provides larger benefits with limited model capacity. For example,

for CAMELYON16, the reduction of loss from joint training for discriminative approaches

is up to 15% when hidden units are reduced to 20, whereas for the 50 neuron condition

the two discriminative approaches are tied (two-layer models). This dovetails with earlier

results that showed larger gains for shallower models. Essentially, a lower-capacity model

has more potential bias (since it represents less complex hypotheses which cannot fit the

ground truth as closely). This makes aligning the training process with team performance

more important because some errors are inevitable; joint training helps the model focus

its limited predictive ability on the most important regions. In theory, sufficiently large

datasets would let us train arbitrarily complicated models that perfectly recover the ground

truth, rendering simple models unnecessary. In practice, limited data requires us to prevent

overfitting by restricting model capacity; maximizing the performance of simple models is

valuable in many tasks.

The second experimental modification introduces an asymmetric loss for CAMELYON16:

motivated by high cost of missing diagnoses in many areas of medicine (such as failing

to recognize the recurrence of illness in patients with a history of cancer), we weight false

negatives twice as heavily as false positives. The gaps between the fixed and joint models

grow under asymmetric costs. For example, in Figure 11.2(b) (equal costs), the two-layer

model performance of discriminative or VOI approaches were previously tied. In Figure

11.2(c) (asymmetric costs), the joint approaches now outperform their fixed counterparts by

up to 10% (discriminative family) and 4.8% (VOI). Optimizing combined team performance

is especially helpful when it is necessary to prioritize between potential errors.

Finally, we examine how joint training influences the capabilities of the ML system in

relation to those of humans. We start with the Galaxy Zoo task (two-layer models, 50 hidden

units, cost = 0.1). Figure 11.3 shows the error rates of the fixed and joint VOI models for
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Figure 11.4: Error rates of humans and decision-theoretic approaches for prominent feature regions of
CAMELYON16.

each of the five classes when acting alone and when paired with people. Both the error

rates of the two approaches on classes 2 and 3, and the way they query humans show

differences, indicating that joint optimization changes how the ML system learns and makes

decisions. The joint approach makes more queries to humans for classes that are hard for

the machine and less for class 1, which is easy for the machine (note that class 1 accounts

for over 70% of instances). This behavior improves team performance on classes 2 and 3

without diminishing performance on class 1. For class 3, the error rate of the joint VOI

model is higher than its counterpart when acting alone, but lower when combined with

the human, a reduction in loss that cannot be simply explained by the marginal increase in

human queries. This shows that the joint model can harness human input more effectively

by discovering input spaces within individual classes where the benefits of complementarity

can be realized, and also that joint training encourages the model to manage tradeoffs in

accuracy to leverage the ability to query the human.

We observe similar behavior for CAMELYON16. Here, we find clear structure in the

human errors, uncovered by fitting the decision tree shown in Figure 11.4 (for the uniform-

cost task with two-layer models and 50 hidden units). Over 68% of human errors are

concentrated in a region containing just 10% of instances, identified using two features.

For each leaf, we show the error rate of the human, the fixed VOI model, and the joint
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VOI model. The joint model prioritizes the region that contains most of the human errors,

improving from the 0.29 error rate of the fixed model to perfect accuracy. This comes at

the cost of increased errors in the far-left leaf; however, in this region the human is almost

perfectly accurate. Overall, this tradeoff made by the joint optimization leads to a 2% overall

reduction in loss. In other words, the distribution of errors incurred by the joint model

shifts to complement the strengths and weaknesses of the human.

11.5 Conclusion and Future Work

We studied how ML systems can be optimized to complement humans via the use of

discriminative and decision-theoretic modeling methodologies. We evaluated the proposed

approaches by performing experiments with two real-world tasks and analyzed the problem

characteristics that lead to higher benefits from training focused on leveraging human-

machine complementarity. The methods presented are aimed at optimizing the expected

value of human-machine teamwork by responding to the shortcomings of ML systems, as

well as the capabilities and blind spots of humans. With this framing, we explored the

relationship between model capacity, asymmetric costs and ML-human complementarity. We

see opportunities for studying additional aspects of human-machine complementarity across

different settings. Directions include optimization of team performance when interactions

between humans and machines extend beyond querying people for answers, such as settings

with more complex, interleaved interactions and with different levels of human initiative and

machine autonomy. We hope that the methods and results presented will stimulate further

pursuit of opportunities for leveraging the complementarity of people and machines.
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Part IV

Inference and epidemics
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Chapter 12

Modeling and inference for

population-specific COVID dynamics

Since December 2019, the COVID-19 pandemic – propagated by the novel coronavirus,

SARS-CoV2 – has resulted in significant morbidity and mortality [BQNS+20], and key

factors such as existing comorbidities and age play a role in an increased risk of mortal-

ity [ZYD+20]. Epidemiological studies have provided significant insights into the disease

and its transmission dynamics to date [XdGM+20, RA20, LPC+20, KRD+20]. However,

national and regional governments have implemented broad-reaching policies in response

to rising case counts and stressed healthcare systems and tailoring these polices based

on an understanding of how population-specific demography impacts outbreak dynamics

will be vital. Previous modeling studies have not incorporated the rich set of household

demographic features needed to address such questions.

This study develops a stochastic agent-based model for SARS-CoV2 transmission which

accounts for distributions of age, household types, comorbidities, and contact between

different age groups in a given population (Fig. 12.1). Our model accounts for both within-

household contact (simulated via household distributions taken from census data) and

out-of-household contact using age-stratified, country-specific estimated contact matri-

ces [PCJ17]. We instantiate the model for Hubei, China; Lombardy, Italy; and New York City,
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Figure 12.1: We use a modified SEIR model, where the infectious states are subdivided into levels of disease
severity. The transitions are probabilistic and there is a time lag for transitioning between states. For example,
the magnified section shows the details of transitions between mild, recovered, and severe states. Each arrow
consists of the probability of transition (e.g., pm→s(ai, ci) denotes the probability of progressing from mild to
severe) as well as the associated time lag (e.g., the time t for progression from mild to severe is drawn from an
exponential distribution with mean λm→s). ai and ci denote the age and set of comorbidities for the infected
individual i.

United States, developing a Bayesian inference strategy for estimating the distribution of

unknown parameters using data on reported deaths during the first wave of the epidemic in

each location. This enables us to uncover differences in the initial dynamics of the epidemic

in each location. We also examine how transmission by particular age groups contributes

to infections and deaths in each location, allowing us to compare the efficacy of efforts to

reduce transmission across said groups. There is large between-population variation in the

role played by any individual age group. However, across populations, both infections and

deaths are substantially reduced by a combination of population-wide physical distancing

and "salutary sheltering" – a term we coin here to describe individuals who shelter in place

irrespective of their exposure or infectious state – by half the individuals in a specific age

group, without the need for potentially untenable policies such as indefinite sheltering of

all older adults.

234



12.1 Methods

This section provides an overview of our modeling and inference strategy. Additional details

may be found in the appendix.

12.1.1 Model

We develop an agent-based model for COVID-19 spread which accounts for the distributions

of age, household types, comorbidities, and contact between different age groups in a

given population. The model follows a susceptible-exposed-infectious-removed (SEIR) template

[VdDLM99, BKO15]. Specifically, we simulate a population of n agents (or individuals), each

with an age ai, a set of comorbidities ci, and a household (a set of other agents). We stratify

age into ten-year intervals and incorporate hypertension and diabetes as comorbidities due

to their worldwide prevalence [RAA+18] and association with higher risk of in-hospital

death for COVID-19 patients [ZYD+20]. However, our model can be expanded to include

other comorbidities of interest in the future. The specific procedure we use to sample agents

from the joint distribution of age, household structures, and comorbidities may be found

in the appendix. We focus on modeling household contacts in particular detail because of

the documented frequency of within-household transmission [KRD+20] and the previous

suggestion that patterns of contact within the household may play a large role in shaping

the epidemic [EPBV20]. It is important to acknowledge that available data sources only

suffice to model the joint distribution of age and household structure, whereas sampled

comorbidities are conditioned only on the age of each agent (ignoring potential correlations

between the comorbidity statuses of household members). However, this procedure still

captures the marginal distribution of comorbidities over age in the population and hence

the aggregate impact of COVID-19 on said population.

The disease is transmitted over a contact structure, which is divided into in-household

and out-of-household groups. Each agent has a household consisting of a set of other

agents (see the appendix for details on how households are generated using country-specific

census information). Individuals infect members of their households at a higher rate than
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out-of-household agents. We model out-of-household transmission using country-specific

estimated contact matrices [PCJ17]. These matrices state the mean number of daily contacts

an individual of a particular age stratum has with individuals from each of the other age

strata. We assume demographics and contact patterns in each location are well-approximated

by country-level data.

The model iterates over a series of discrete time steps, each representing a single day,

from a starting time t0 to an end time T. There are two main components to each time

step: disease progression and new infections. The progression component is modeled by

drawing two random variables for each individual each time they change severity levels

(e.g., on entering the mild state). The first random variable is Bernoulli and indicates

whether the individual will recover or progress to the next severity level. The second

variable represents the amount of time until progression to the next severity level. We

use exponential distributions for almost all time-to-event distributions, a common choice

in the absence of specific distributional information [All10, Col15]. The exception is the

incubation time between presymptomatic and mild states, where more specific information

is available; here, we use a log-normal distribution based on estimates by [LGB+20]. The

appendix (Table S1) summarizes all distributions and their parameters and describes how

we estimate age- and comorbidity-dependent severity progression. The “mild" state in our

model encompasses the entire gradient of individuals who may have specific symptoms of

COVID-19 but do not warrant hospitalization, those with paucisymptomatic or subclinical

infections, and those with no detectable symptoms at all. Our model does not currently

distinguish between the transmissibility of individuals in any of these states but could be

extended with a more detailed characterization.

In the new infections component, infected individuals infect each of their household

members with probability ph at each time step. ph is calibrated so that the total probability

of infecting a household member before either isolation or recovery matches the estimated

secondary attack rate for household members of COVID-19 patients (i.e., the average fraction

of household members infected) [LEK20]. Infected individuals draw outside-of-household
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contacts from the general population using the country-specific contact matrix. For an

infected individual of age group i, we sample ws
ij ∼ Poisson(Ms

ij) contacts for each age

group j and setting s where Ms is the country-specific contact matrix for setting s. We

include contacts in work, school, and community settings. Poisson distributions are a

standard choice for modeling contact distributions [PCJ17]. Then, we sample ws
ij contacts of

age j uniformly with replacement, and each contact is infected with the probability pinf, the

probability of infection given contact. There is evidence to suggest that the probability of

infection is higher for an older individual than younger given the same exposure [ZLL+20],

consistent with decline in immune function with age. We adjust for this by letting the

probability of infection be βpinf when the exposed individual is over the age of 60, for β > 1.

β is calibrated to match the fraction of deaths in China attributed to individuals over the

age of 60, resulting in a value of 1.25. This is consistent with the relationship between age

and attack rate amongst close contacts of a confirmed case reported by [ZLL+20], where

the increase in risk of infection for a contact over 65 years old was estimated in the range

1.12–1.92.

12.1.2 Inference of posterior distributions

We infer unknown model parameters and states in a Bayesian framework. This entails

placing a prior distribution over the unknown parameters, and then specifying a likelihood

function for the observable data, the time series of deaths reported in a location. We posit

the following generative model for the observed deaths:

pinf, dmult, t0 ∼ U

d1....dT ∼ ABM(pinf, dmult, t0)

ot ∼ NegativeBinomial(dt, σ2
obs) t = 1...T

where U denotes a joint uniform prior, ABM denotes a draw from the stochastic agent-

based dynamics, d1...dT are the time series output by the simulation, and o1...oT are the

number of deaths observed on the corresponding dates. We model the observations as
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drawn from a negative binomial distribution (appropriate for overdispersed count data)

with dispersion parameter σ2
obs. We separately estimated σ2

obs by fitting an autoregressive

negative binomial regression to the observed counts using the R package tscount [LFF15].

The negative binomial observation model was strongly preferred to a Poisson model (see

Table S2 with AIC values). Together, the likelihood function is given by

L(pinf, dmult, t0, d1...dT) =
T

∏
t=1

Pr
[
ot|dt, σ2

obs
]

.

To obtain the posterior distribution, we use Latin hypercube sampling to draw many

(10-80 thousand per location, depending on the size of the prior ranges) samples from the

joint uniform prior over pinf, dmult and t0, and then sample the latent variables d1...dT at

each combination of parameters. We compute the likelihood for the full sample (including

the latent variables). This allows us to use importance sampling to resample values of

(pinf, dmult, t0, d1...dT) according to the posterior distribution. Finally, we marginalize out

d1...dT to obtain the posterior over the parameters pinf, dmult, t0, along with unobservable

state variables of the simulation such as the number of infected individuals at each step.

12.2 Results

12.2.1 Inferring differences in dynamics between populations

Using our model, we estimate posterior distributions over unobserved quantities which

characterize the dynamics of the epidemic in a particular location. This section presents

estimates for two quantities: first, the basic reproduction number r0, and second, the rate at

which infections are documented. Neither quantity is directly observable in the data due

to substantial underdocumentation of infections; however, these estimates are needed to

characterize the scope of the outbreak in a particular location, the degree to which existing

testing strategies capture new infections, and the rate at which infections are expected to

increase in the absence of any intervention. These findings are critical to formulate policy
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interventions that are tailored to the outbreak as it evolves in a given population. We start by

providing a brief overview of our inference strategy and model validation and then present

the main estimates.

There are four model parameters for which values are not precisely estimated in the

literature. Each such parameter is instead drawn from a prior distribution. First is pinf,

the probability of infection given contact with an infected individual. This determines the

level of transmissibility of the disease. Second is t0, the start time of the infection, which

is not precisely characterized in most locations and has an impact due to rapid doubling

times. Third is a parameter dmult, which accounts for differences in mortality rates between

locations that are not captured by demographic factors in the model (e.g., the impact of

variation in health system capacities). dmult is a multiplier to the baseline mortality rate

from [VOD+20] and is applied uniformly across age groups. We also include an age-specific

multiplier to the mortality rate for individuals over 60 in Lombardy, which is calibrated

independently of the other parameters to match the fraction of deaths attributed to the

60+ age group (which is significantly higher in Lombardy than the other two locations

[VOD+20, oHH20, ORB20]). Further discussion of the age-specific distribution of deaths

can be found in the appendix. Fourth is δc, the reduction in person-to-person contact after

mobility restrictions were imposed in each location. Following mobility restrictions, the

expected number of contacts between agents in any two age groups outside the household

is reduced to δc times its starting value. For Hubei, we fix this parameter using a post-

lockdown contact survey [ZLL+20]. For Lombardy and New York City, post-lockdown

surveys are not available and so we estimate δc within the Bayesian framework. Details

of the prior distributions and the modeled scenario in each location can be found in the

appendix.

By conditioning on the observed time series of deaths, we obtain a joint posterior

distribution over both the unobserved model states, such as the number of people infected

at each time step, as well as the three unknown parameters. We use reported deaths because

they are believed to be better documented than infections and perform a sensitivity analysis
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to account for possible underdocumentation of deaths [KLSK20, MBF+20]. Fig. 12.2 shows

that the model closely reproduces the observed time series of deaths in each location. In the

appendix, we also perform out-of-sample validation by fitting the model using a portion of

the time series and assessing the accuracy of the predictive posterior distribution on data

that was not used to fit the model.

The left column of Fig. 12.3 shows the posterior distribution over r0 in each location.

Substantial differences are evident between the three locations. The posterior median is

2.23 in Hubei (90% credible interval: 2.10–2.37), 2.95 in Lombardy (2.80–3.19), and 3.20

in New York City (2.71–3.93). The estimates for Hubei fall within the range of a number

of existing estimates [MM20], while the interval for Lombardy is similar to the interval

2.9–3.2 estimated by previous work [GPA+20]. The estimated r0 for New York City is larger

than either Hubei or Lombardy. To our knowledge, this estimate constitutes the first r0

assessment in the literature specifically for New York City. The relative ranking of r0 for

the three populations is not impacted by a sensitivity analysis for underreporting of deaths,

shown in Fig. 12.3. Death totals from Hubei have been substantially revised upwards to

correct for underreporting in the early stages of the epidemic [Bri20a], but such corrections

are either unavailable or rapidly evolving for Lombardy and New York City. Our sensitivity

analysis assumes that deaths in Lombardy and New York City are twice what was reported,

consistent with preliminary investigations of excess mortality data [KLSK20, MBF+20]. In

this scenario, the posterior median value of r0 rises slightly to 3.12 in Lombardy and remains

constant (at 3.20) in New York City. However, the estimated value of δc for each location

rises sharply, indicating that the model explains increased deaths in this scenario via the

possibility of less severe contact reductions during lockdown.

The right column of Fig. 12.3 shows the posterior distribution over the fraction of

infections that were documented in each location (obtained by dividing the number of

confirmed cases in each location by the number of infections in the simulation under

each sample from the posterior). Documentation rates are uniformly low, indicating

undocumented infections in all locations; however, we estimate lower documentation in
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Lombardy (90% credible interval: 5.1–6.0%) than in either New York City (5.4–12.7%) or

Hubei (6.4–12.1%). Documentation rates are substantially lower when assuming twice the

reported deaths in Lombardy and New York City (Fig. 12.3, bottom row).

Although we estimate a substantial number of undocumented infections, all locations

remain potentially vulnerable to second-wave outbreaks, with the median percentage of

the population infected at 1.3% in Hubei, 13.8% in Lombardy, and 22.0% in New York City.

Note that in Hubei, our estimate is for the entire province of Hubei, with a population of

58.5 million people, including – but not limited to – the city of Wuhan. Recent serological

surveys have estimated 25% of the population previously infected in New York City [Gov20],

consistent with our distribution. When assuming that deaths are underreported by a factor of

two in Lombardy and New York City, the median percentage infected is 28.2% in Lombardy

and 38.7% in New York City1. Overall, our estimates for r0 and the remaining population of

susceptible individuals indicate that Hubei, Lombardy, and New York City could experience

new outbreaks in the absence of continued interventions to reduce transmission. Despite

this, between-population differences remain substantial; Hubei, Lombardy, and New York

City have each had distinct experiences with COVID-19 that must be considered with respect

to future policy responses.

12.2.2 Containment Policies: Salutary Sheltering and Physical Distancing

Various interventions – from complete lockdown to physical distancing recommendations

– have been implemented worldwide in response to COVID-19. Within these are a range

of alternatives. For example, a government could encourage some percentage of a given

age group to remain sheltered in place, while the rest of the population could continue

in-person work and social activities. Age-specific policies are particularly relevant because

1Of note, even in a scenario with substantially more deaths than documented, it is possible for the fraction
infected to be lower than these estimates. Our model’s contact patterns capture the general population,
but there is the potential for excess deaths to occur disproportionately in high-risk settings with anomalous
contact patterns (e.g., reports have linked a large number of deaths to elder care facilities [YLIS20]). In such
circumstances, higher total deaths would not necessarily indicate a substantial increase in the fraction of the
entire population infected.
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Figure 12.2: Posterior distribution over the number of deaths each day compared to the number of reported
deaths. Light blue lines are individual samples from the posterior, green is the median, and the black dots are
the number of reported deaths. The red dashed line represents the start of modeled contact reductions in each
location.
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Figure 12.3: Posterior distribution over r0 and the fraction of infections documented in each location. Top
row: conditioning on reported deaths. Bottom row: conditioning on deaths in New York City and Lombardy
being twice what was reported.
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Figure 12.4: Number of new infections and new deaths in second-wave outbreak scenarios for each location.
Each column shows a different level of physical distancing by the population as a whole, where contacts between
all age groups are reduced to the given percentage of their starting value. The x-axis within each plot shows
the result when the given fraction of a single age group shelters at home (in addition to physical distancing by
the rest of the population). The result of this combination of sheltering and distancing is represented by a bar,
where the color of the bar indicates the age group which engaged in sheltering (see legend). The height of the
bar gives the total number of infections or deaths in the population in that scenario. Each row gives the results
for a single location, where the first two plots show the fraction of the population which is newly infected in the
second wave, and the next two plots show the number of new deaths which occur.
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they have already been employed in some countries (e.g., US CDC recommendations that

people above 65 years old shelter in place [fDCP20a]) and because older age groups are

more likely to be able to telecommute, at least in the US [MRL12, oLS19].

Here, we investigate to what extent a second-wave outbreak in each of our three locations

of interest can be mitigated by encouraging a single age group to engage in salutary

sheltering or whether the entire population must also be asked to adopt physical distancing.

We compare scenarios that combine varying levels of two different interventions: (1) salutary

sheltering by a given fraction of a single age group modeled by eliminating all outside-

of-household contact for agents who engage in sheltering; and (2) physical distancing

by the population as a whole, modeled by reducing the expected number of outside-of-

household contacts between all agents (who are not engaging in salutary sheltering) to a

given percentage of their original value. While this case study applies to Hubei, Lombardy,

and New York City, it could be extended to other locations using population-specific

demographic data as well. The appendix includes details of all experiments described along

with sensitivity analyses where the impact of physical distancing is further varied and

where the population begins in a completely susceptible state.

Fig. 12.4 shows the number of new infections or deaths in each location during the

second wave as we vary three quantities: (1) the reduction in contacts due to physical

distancing by the entire population, (2) the age group which engages in salutary sheltering,

and (3) the fraction of that age group which shelters in place. All results are averages

over population-level parameters from the posterior distributions estimated in the previous

section. We highlight several main results. The appendix provides a further breakdown of

results from each scenario in terms of infections and deaths in those above and below 60

years of age.

First, the marginal impact of salutary sheltering by different age groups in limiting

infections in the second-wave outbreak depends on the level of physical distancing adopted

by the rest of the population. When physical distancing is high (25% of the original level

of contact, shown in the appendix), the second-wave outbreak never infects a significant
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number of people because the effective reproduction number remains below 1. When

physical distancing is not widely adopted (75% of the original level of contact), the outbreak

reaches a significant fraction of the population no matter which group engages in sheltering

(at least 30% of the population and often more becomes infected). However, in the middle

scenario (50% of the original level of contact), the population is in a state where sheltering

by members of a group with a large number of average contacts can significantly reduce the

extent of total infections. Typically, members of the 20-40 and 40-60 age groups have more

contacts than those in older or younger groups [PCJ17], so sheltering by both these groups

can sharply reduce the fraction of the population infected in the second wave.

Second, the importance of sheltering by each age group in preventing deaths varies

according to the level of physical distancing adopted by the rest of the population. When

returning to a near-normal level of contact makes infection of a significant fraction of the

population unavoidable (75% of normal contact), deaths are most appreciably reduced by

sheltering the 60+ age group, since older individuals are at much higher risk of death after

infection than those in younger age groups. However, in the intermediate scenario of 50%

contact reduction, it may be more effective for members of younger age groups (20-40 or

40-60) to engage in salutary sheltering. While these individuals are typically at lower risk of

death than those in the 60+ group, they also have a significantly larger number of average

daily contacts [PCJ17]. By sheltering, they help shield older groups from infection more

effectively than if an equivalent fraction of the older group engaged in sheltering themselves.

Third, the impact of sheltering by these groups across different scenarios is impacted

by between-population differences. Each population has differences in contact patterns,

the estimated probability of infection on contact (pinf), the fraction who were infected in

the initial outbreak (assuming short-term immunity against reinfection during the second

outbreak), and the vulnerability of older individuals. For example, sheltering by the 60+ age

group reduces deaths much more substantially in Lombardy than in either Hubei or New

York City because Italian fatalities are concentrated more heavily in older groups, with 95%

of reported deaths in the 60+ age group compared to 80% in Hubei and 74% in New York
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City [VOD+20, oHH20, ORB20]. As a result, it is still slightly preferable in terms of averted

deaths to shelter the 60+ group in Lombardy even in scenarios where there would be an

advantage to sheltering by younger groups in other locations (50% contact levels). Another

example is in Hubei, where the fraction of the population that is newly infected in the

second wave is larger than in either Lombardy or New York City (despite a lower estimated

r0 in Hubei). This is because we estimate that a non-negligible portion of Lombardy and

New York City were both previously infected, while the population of Hubei province

is still almost entirely susceptible (see previous section). The interplay of demographics,

social structures, and the impact of the first outbreak create a range of between-population

differences across scenarios.

Building on this analysis of Hubei, Lombardy, and New York City, our model suggests

that hybrid policies that combine targeted salutary sheltering by one sub-population and

physical distancing by the rest can substantially mitigate infections and deaths due to a

second-wave outbreak. However, the relative importance of sheltering by different age

groups is strongly impacted by the extent to which physical distancing is adopted by the

rest of the population and by a range of factors which can differ between populations. This

suggests that demography and behavior in a particular place must be carefully considered

while developing population-level interventions. Our analysis can be readily extended to

other locations by parameterizing our model for a new population using existing demo-

graphic data and age-stratified contact patterns, allowing analysis of population-specific

interventions.

12.3 Discussion and Future Work

In this study, we developed a model of SARS-CoV2 transmission that incorporates household

structure, age distributions, comorbidities, and age-stratified contact patterns in Hubei, Lom-

bardy, and New York City and created simulations using available demographic information

from these three locations. Our findings suggest that in some locations, substantial reduc-

tions in SARS-CoV2 spread can be achieved by less drastic options short of population-wide
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sheltering in place. Instead, targeted salutary sheltering of specific age groups combined

with adherence to physical distancing by the rest of the population may be sufficient to

thwart a substantial fraction of infections and deaths. Physical distancing could be achieved

by engaging in activities such as staggered work schedules, increasing spacing in restaurants,

and prescribing times to use the gym or grocery store. Specific mechanisms and considera-

tions for implementing physical distancing are documented in the supplementary text. It is

important to note that between-population differences in the impact of sheltering different

age groups can be substantial. Contact patterns, household structures, and variation in

fatality rates (whether due to demographics or factors such as health system capacity) all

influence the number of infections or deaths averted by sheltering a particular group. Thus,

the implementation of physical distancing and sheltering policies should be tailored to the

dynamics of COVID-19 in a particular population.

From a pragmatic perspective, targeted salutary sheltering may not be realistic for all

populations. Its feasibility relies on access to safe shelter, which does not reflect reality for

all individuals. In addition, sociopolitical realities may render this recommendation more

feasible in some populations than in others. Concerns for personal liberty, discrimination

against sub-segments of the population, and societal acceptability may prevent the adoption

of targeted salutary sheltering in some regions of the world. Allowing salutary sheltering to

operate on a voluntary basis using a shift system (rather than for indefinite time periods)

may address some of these issues. Future work should formulate targeted recommendations

about salutary sheltering and physical distancing by age group or other stratification

adapted to a specific country’s workforce.

One strength of this study is our ability to assess targeted interventions such as salutary

sheltering in a population-specific manner. Existing modeling work of COVID-19 has largely

focused on simpler compartmental or branching process models which do not allow for

such assessments. While these models have played an important role in estimating key

parameters such as r0 [KRD+20, RA20] and the rate at which infections are documented

[DSNT+20], as well as in the evaluation of prospective non-pharmaceutical interventions
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[KTLG20, HAG+20], they do not characterize how differences in demography impact the

course of an epidemic in a particular location. Our focus on population-specific demography

allows for further refinement of current mortality estimates and is a strength of this study.

r0 estimates in this study are generally comparable to other estimates in the literature

[MM20], although our model yields higher estimates for New York City and Lombardy

than Hubei – possibly due to differential mask-wearing practices [FSX+20] or adoption

of behavioral interventions such as hand hygiene [DGAA+08]. Reporting rates estimated

in this study were generally lower than those in prior studies [RHA+20], although the

trend across locations is consistent. One potential explanation is that Russell et al. estimate

documentation from death data using a case fatality rate (CFR) from the literature while our

model uses an infection fatality rate (IFR). The IFR is lower because it includes all infections,

not only those that become confirmed cases. A lower fatality rate in turn implies that

each additional infection is less likely to result in death, and so a greater number of total

infections are required to account for the observed number of deaths.

One key advantage of our framework is its flexibility. Our model is modifiable to

test different policies or simulate additional features with greater fidelity across a variety

of populations. Examples of future work that can be accommodated include analysis of

contact tracing and testing policies, health system capacity, and multiple waves of infection

after lifting physical distancing restrictions. Our model includes the necessary features to

simulate these scenarios while remaining otherwise parsimonious, a desirable feature given

uncertainties in data reporting.

This study is not without limitations however. While several comorbidities associated

with mortality in COVID-19 were accounted for, the availability of existing data limited the

incorporation of all relevant comorbidities. Most notably, chronic pulmonary disease was not

included although it has been associated with mortality in COVID-19 [fDCP20b], nor was

smoking, despite its prevalence in both China and Italy [PX19, LZP+17]. Gender-mediated

differences were also excluded, which may be important for both behavioral reasons (e.g.,

adoption of hand-washing [GMGS97, JSG+03]) and biological reasons (e.g, the potential
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protective role of estrogen in SARS-CoV infections [CFM+17]). Nevertheless, these factors

can all be incorporated into the model as additional data becomes available.

Additionally, our second-wave scenarios assumed that individuals who were infected

previously are immune to reinfection during the second wave. The duration of acquired

immunity to SARS-CoV2 has not been precisely defined, though antibody kinetics have been

studied in recent work [LTS+20, SGM+20, IJN+20]. If reinfection during a second wave

is common, more individuals may be infected than predicted by our simulations (though

mortality may be lower if previous infection is protective against adverse effects).

Finally, it is worth noting that we have not yet attempted to model super-spreader

events in our existing framework. Such events may have been consequential in South Korea

[Bri20b], and future work could attempt to model the epidemic there by incorporating a

dispersion parameter into the contact distribution, a method which has been employed in

other models [RA20].

Despite these limitations, this study demonstrates the importance of considering popu-

lation and household demographics when attempting to better define outbreak dynamics

for COVID-19. Furthermore, this model highlights potential policy implications for non-

pharmaceutical interventions that account for population-specific demographic features and

may provide alternative strategies for national and regional governments moving forward.
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Chapter 13

Bayesian inference for partially

observed epidemics

A key goal for public health is effective surveillance and tracking of infectious disease

outbreaks. This work is motivated in particular by the COVID-19 pandemic but the methods

we describe are applicable to other diseases as well. A central question is to estimate the

empirical rate of transmission over time, often formalized via the reproduction number

Rt, t = 1...T. Rt describes the expected number of secondary infections caused by someone

infected at time t. Accurate estimates of Rt are critical to detect emerging outbreaks, forecast

future cases, and measure the impact of interventions imposed to limit spread.

Rt is typically estimated using daily case counts, i.e., the number of new infections

detected via testing each day. Standard methods, including prominent dashboards developed

for COVID-19, provide accurate estimates under idealized conditions for the observation of

cases and have been successfully used at a national or state level where many observations

are available and sampling variation averages out [AHT+20, FMG+20, SVK20]. However,

successful reopening will require programs which track spread at the level of particular

colleges, workplaces, or towns, where partial observability poses several challenges. First,

only a small number of infected people may be tested. It is estimated that only about 10% of

SARS-COV-2 infections in the US result in a confirmed test [HRL+20] and we could expect
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even fewer in populations with a high prevalence of asymptomatic or mild infections (e.g.,

college students). Second, the biological properties of the test play an important role. For

example, a PCR test which detects viral RNA will show positive results at different times

than an antibody or antigen test. Further, there can be substantial heterogeneity across

individuals. Third, testing programs may collect samples in a particular way which impacts

the observations. For example, one suggestion for schools and workplaces to reopen is

to institute regular surveillance testing of a fraction of the population in order to detect

outbreaks and catch asymptomatic carriers [LWL+21]. The observations will depend on the

fraction of the population enrolled in testing (potentially small due to budget constraints)

along with the sampling design (e.g., cross-sectional vs longitudinal).

This chapter presents GPRt, a novel Bayesian approach to estimating Rt which accounts

for partial observability in a flexible and principled manner (illustrated in Figure 13.1). This

method yields well-calibrated probabilistic estimates (the posterior distribution). Our model

places a Gaussian process (GP) prior over Rt, allowing it to be an arbitrary smooth function.

Then, we explicitly model the sampling process which generates the observations from

the true trajectory of infections. While this substantially improves accuracy (as we show

experimentally) it creates a much more difficult inference problem than has been previously

considered. Specifically, our model contains tens or hundreds of thousands of discrete latent

variables, preventing the application of out-of-the-box methods. Moreover, the values of

many variables are tightly correlated in the posterior distribution, further complicating

inference. To make inference computationally tractable, we propose a novel stochastic

variational inference method, enabled by a custom stochastic gradient estimator for the

variational objective. Extensive experiments show that our method recovers an accurate and

well-calibrated posterior distribution in challenging situations where previous methods fail.

13.1 Related Work

There is a substantial body of work which attempts to infer unknowns in a disease outbreak.

A frequent target for inference is the basic reproduction number R0 [MM20, RA20, WCK+20];
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Figure 13.1: Illustration of our GPRt method. Top row: the generative model GPRt posits for the observed
data. Bottom row: the inference process to recover a posterior over Rt.

by contrast, we attempt the more challenging task of estimating a reproduction number

which can vary arbitrarily over time. There is a literature of both classic methods for

estimating Rt [WT04, CFFC13, CCFJ19] and newer methods developed for the COVID-19

pandemic and implemented in popular dashboards [AHT+20, SVK20]. None of these meth-

ods incorporate partial observability and we empirically demonstrate that GPRt improves

substantially over methods in each category. Another strand of literature develops maxi-

mum likelihood or particle filter estimates of the parameters of an epidemiological model

[KIPB08, DKB13, CCD18]. However, their work focuses on accommodating a complex model

of the underlying disease dynamics; by contrast, we develop methods for probabilistically

well-grounded inferences under a complex observation model. There is also a great deal of

computational work more broadly concerned with disease control. Examples include opti-

mization problems related to vaccination or quarantine decisions [SAPV15, ZP14a, ZAVP15],

machine learning methods for forecasting (without recovering a probabilistic view of Rt)

[CKL+14, RGM+15], and agent-based simulations of disease dynamics [BEM08]. Our work

complements this literature by allowing inference of a distribution over Rt from noisy data,

which can serve as the input that parameterizes an optimization problem or simulation.
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13.2 Model

We now introduce a model for a disease process with a time-varying reproduction number.

Subsequently, we introduce example models for how the observations are generated from

the disease process which our framework can support.

13.2.1 Disease Model

We use a standard stochastic model of disease transmission similar to other Rt estimation

methods [WT04, CFFC13, CCFJ19]; our contribution is a more powerful inference method-

ology which can accommodate complex observation models alongside a GP prior. Let

R = [R1...RT] be the vector with Rt for each time. From R, the disease model defines a

distribution over a vector n = [n1...nT] with the number of people newly infected each

day. The main idea is that, over the course of a given individual’s infection, they cause a

Poisson-distributed number of new infections with mean determined by R. Specifically, if

on day t individual i has been infected for hi days the expected number of new infections

caused by i that day is

λi
t = whi Rt.

Here whi gives the level of infectiousness of an individual hi days post-infection. w is

normalized so that ∑h wh = 1. For later convenience, we will define φt = ∑N
i=1 whi to be the

total infectiousness in the population before scaling by Rt (N is the total population size).

Each day, each infected individual i draws ni
t ∼ Poisson(λi

t) other individuals to infect.

We also incorporate infections from outside the population, with a mean of γ such infections

per day. We assume the rate of external infection is constant with respect to our time

but our model could be extended to a time-varying γ. We treat γ mostly as a nuisance

parameter: our true objective is to infer R, but doing so requires accounting for the potential

that some detected cases are due to infections from outside the population. We define

nt = ∑N
i=1 ni

t + Poisson(γ) to be the total number of new infections. Since φ is fixed given

the time series n, we denote it as a function φ(n). We denote the probabilistic disease
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model induced by a specific choice of R and γ as M(R, γ) and the draw of a time series of

infections from the model as n ∼ M(R, γ).

13.2.2 Observation Model

We now depart from the standard disease model used in previous work and describe a wide-

ranging set of examples for how our framework can accommodate models of the process

which generates the observed data from the latent (unknown) true infections. Previous work

assumes either perfect observability or else the simplest of the three observation models we

describe below (uniform undersampling). Our focus is where observations are generated by

a medical test which confirms the presence of the pathogen of interest. Individuals have

some probability of being tested at different times (depending on the testing policy adopted)

and then test positive with a probability which depends on the biological characteristics of

the disease and the test in question.

Modeling tests

The kind of test employed determines when an individual is likely to test positive during

the course of infection. For example, for COVID-19, PCR tests are commonly used to detect

SARS-COV-2 RNA. They are highly sensitive and can detect early infections. Most infected

individuals become PCR-negative within the week or two following infection as viral RNA

is cleared [KLL+20]. By contrast, serological tests detect the antibodies produced after

infection. An individual is not likely to test serologically positive until a week or more

post-infection, but may then continue to test serologically positive for months afterwards

[IJN+20]. The observable data generated by a serological testing program is likely quite

different than a PCR testing program since the time-frame and variance of when individuals

test positive differs strongly. A range of other examples are possible (e.g., antigen tests) and

can be easily incorporated into our framework.

Our model adopts a generic representation of a particular test as a distribution D over

tconvert, the number of days post-infection when an individual begins to test positive and
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trevert, the number of days post-infection when they cease to test positive. For an infected

individual i, we write ti
convert, ti

revert ∼ D. Our method only assumes the ability to sample

from D, meaning that we can directly plug in the results of lab studies assessing the

properties of a test. ti
convert, ti

revert are unobserved: we only get to see if an individual tests

positive at a given point in time, not the full range of times that they would have tested

positive.

Next, we describe a series of example models for how and when individuals are tested,

which reveal observations depending on the status (ti
convert, ti

revert) for each person who is

tested. For convenience, we let ti
convert = ∞ for an individual who is never infected. Note

however that we can model false negatives by having D sometimes set ti
convert = ∞ for an

infected individual, or false positives by returning finite ti
convert for an uninfected individual.

We denote the number of observed positive tests on day t as xt. An observation model is

a distribution over x given n, denoted x ∼ Obs(n). Each setting below describes one such

distribution.

Uniform undersampling

In this setting, each individual who is infected is tested independently with some probability

ptest (e.g., if they individually decide whether to seek a test). To model this process,

we introduce two new sets of latent random variables. First, a binary variable zi ∼
Bernoulli(ptest), indicating whether individual i is tested. Second, a delay ci, giving the

number of days between ti
convert and when individual i is tested. We can integrate out the zi

and obtain the following conditional distribution for the observed number of positive tests

xt:

xt|c, tconvert ∼ Binomial

(
N

∑
i=1

1[t = ti
convert + ci], ptest

)

where 1[·] denotes the indicator function of an event. However, we cannot analytically

integrate out tconvert and c.
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Cross-sectional testing

Here, a uniformly random sample of st individuals are tested on each day t. This models

a random screening program (e.g., testing random employees each day as they enter a

workplace). In this case, we have

xt|tconvert, trevert ∼ Binomial

(
st,

1
N

N

∑
i=1

1[ti
convert ≤ t < ti

revert]

)

This expression provides the likelihood of x after conditioning on the latent variables

ti
convert, ti

revert, though there is no closed-form expression conditioning only on n.

Longitudinal testing

In this setting, a single sample from the population is chosen up front and every individual

in the sample is tested every d days. We again denote the total number of individual tested

on day t as st, but note that now the group of individuals who are tested repeats every d

days. Longitudinal testing offers different (and potentially more revealing) information than

cross-sectional testing since when an individual first tests positive, we know that they did

not test positive d days ago. However, it complicates inference by introducing correlations

between the test results at different time steps. Let At denote the set of individuals who

are tested at time t. We assume that the complete sample
⋃d

t=1 At is chosen uniformly

at random from the population, with the chosen individuals then randomly partitioned

between the d days. We have

xt = ∑
i∈At

1[ti
convert > t− d and ti

convert ≤ t and ti
revert > t]

where ti
convert > t− d captures that i was not positive on their previous test. This introduces

correlations between xt and xt−d, so there is not a simple closed-form expression for the

distribution of the time series x even after conditioning on ti
convert and ti

revert. (as there is in

the cross-sectional case). We will instead build a flexible framework for inference which can

just as well use a kind of sample of the log-likelihood.
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Inference Problem

We will place a Gaussian process (GP) prior over R, resulting in the following generative

model:

R ∼ GP(1,K), γ ∼ Exp(γ̄)

n ∼ M(R, γ)

x ∼ Obs(n).

where GP(1,K) denotes a Gaussian process with constant mean 1 and kernel K and Exp(γ̄)

is an exponential prior on γ with mean γ̄. Given the observation x, our goal is to compute

the resulting posterior distribution over R and γ. However, is complicated by the fact

that x is determined by a large number of discrete latent variables, primarily n (the time

series of infections) and {ti
convert, ti

revert}N
i=1, the times when each individual tests positive. A

typical strategy for inference in complex Bayesian models is Markov Chain Monte Carlo

(MCMC). However, MCMC is difficult to apply because of tight correlations between the

values of variables over time: due to the GP prior, we expect values of R to be closely

correlated between timesteps, and successive values of n are highly correlated via the

model M. Formulating good proposal distributions for high-dimensional, tightly correlated

random variables is notoriously difficult and has presented problems for GP inference via

MCMC in other domains [TLR08].

The other main approach to Bayesian inference is variational inference, where we attempt

to find the best approximation to the posterior distribution within some restricted family.

Modern variational inference methods, typically intended for deep models such as varia-

tional autoencoders [KW13], use a combination of autodifferentiation frameworks and the

reparameterization trick to differentiate through the variational objective [KTR+17]. This

process is highly effective for models with only continuous latent variables. However, our

model has many thousands of discrete latent variables which cannot be reparameterized

in a differentiable manner. Typical solutions to this problem would be to either integrate
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out the discrete variables or to replace them with a continuous relaxation [JGP17, VMB+18].

Neither solution is attractive in our case – the structure of the model does not allow us to

integrate out the discrete variables analytically, while a continuous relaxation is infeasible

because our latent variables have a strict integer interpretation (every infection requires in a

particular individual becoming test-positive at particular points in time).

The last resort to differentiate through discrete probabilistic models is the score function

estimator [PBJ12], which is often difficult to apply due to high variance. GPRt uses a

combination of techniques which exploit the structure of infectious disease models to

develop an estimator with controlled variance. First, we develop a more tractable variational

lower bound which is amenable to stochastic optimization. Second, we hybridize the

reparameterization and score function estimators across different parts of the generative

model to take advantage of the properties of each component. Third, we develop techniques

to sample low-variance estimates of the log-likelihood for each of the observation models

introduced earlier. These techniques are introduced in the next section.

GPRt: Variational Inference Algorithm

We now derive GPRt, a novel variational inference method for Rt estimation. GPRt approxi-

mates the true (uncomputable) posterior over (R, γ) via a multivariate normal distribution

with mean µ and covariance matrix Σ. µt is the posterior mean for Rt while Σt,t′ gives the

posterior covariance between Rt and Rt′ . µγ is the mean for γ and Σγ,· gives its covariance

with R. The diagonal Σt,t gives the variance of the posterior over R at each time, capturing

the overall level of uncertainty. The aim is to find a µ and Σ which closely approximate

the true posterior. Let q(R, γ|µ, Σ) denote the variational distribution. Let p be the true

generative distribution, where p(R, γ, x) is the joint distribution over x and (R, γ), p(R, γ)

is the prior over (R, γ), and p(R, γ|x) is the posterior over (R, γ) after conditioning on x.

The aim of variational inference is to maximize a lower bound on the total log-probability
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of the evidence x:

log p(x) ≥ E
R,γ∼q

[log p(R, γ)] + E
R,γ∼q

[log p(x|R, γ)]

− E
R,γ∼q

[log q(R, γ|µ, Σ)]

where the right-hand side is referred to as the Evidence Lower Bound (ELBO). Our goal is

to maximize the ELBO via gradient ascent on the parameters µ and Σ. This requires us to

develop an estimator for the gradient of each term in the ELBO. The first term is the negative

cross-entropy between q and the prior p(R, γ). Because both q and p have simple parametric

forms, this can be easily computed and differentiated. The last term is the entropy, which is

similarly tractable. The middle term is the expected log-likelihood. Developing an estimator

for the gradient of this term is substantially more complicated and will be our focus. In fact,

for computational tractability we will actually develop an estimator for a lower bound on

the expected log-likelihood; substituting this lower bound into the ELBO still gives a valid

lower bound on log p(x) and so is a sensible objective.

13.2.3 Gradient Estimator

The essential problem is that computing the log-likelihood of R requires integrating out the

discrete latent variable n induced by the disease spread model, which is computationally

intractable. The aim of this section is to develop the following stochastic estimator:

Theorem 24. Let L be the Cholesky factor of Σ, ξ ∼ N(0, I), and

R

γ

 = µ + Lξ. Let n ∼

M(R, γ). Finally, define

∇̂ = ∇µ,L log M(n|R, γ) log p(x|n).

There exists a function g(µ, Σ) with ER,γ∼q [log p(x|R, γ)]≥ g(µ, Σ) ∀µ, Σ and E[∇̂] = ∇g(µ, Σ).

Essentially, Theorem 24 states that ∇̂ is an unbiased estimator for a lower bound on

the expected log-likelihood, exactly what we need to optimize a lower bound on log p(x)

by stochastic gradient methods. Moreoever, as we will highlight below, we can efficiently
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compute the terms of ∇̂ via a combination of leveraging the structure of the disease model

to apply autodifferentiation tools and novel sampling methods for the observation model.

We now derive ∇̂.

Proof. Expanding the dependence of x on n we can rewrite the log-likelihood as

E
R,γ∼q

[log p(x|R, γ)] = E
R,γ∼q(µ,Σ)

[
log
(

E
n∼M(R,γ)

[p(x|n)]
)]

It is not clear how to develop a well-behaved gradient estimator for this expression because

we wish to differentiate with respect to the parameters governing two nested expectations,

one within the log. However, via Jensen’s inequality, we can derive the lower bound

E
R,γ∼q

[log p(x|R, γ)] ≥ E
R,γ∼q(µ,Σ)

[
E

n∼M(R,γ)
[log p(x|n)]

]
,

pushing the log inside the expectation. We will substitute this bound into the ELBO,

obtaining a valid lower bound to maximize. The key advantage is that our new lower bound

admits an efficient stochastic gradient estimator. We start with the inner expectation and

attempt to compute a gradient with respect to R (which controls the distribution of the

simulation results n). Using score function estimator gives

∇R,γ E
n∼M(R,γ)

[log p(x|n)]

= E
n∼M(R,γ)

[∇R,γ log M(n|R, γ) log p(x|n)]

which expresses the gradient with respect to (R, γ) in terms of the gradient of the probability

density of the disease model M with respect to (R, γ). It turns out that log M(n, φ|R, γ)

can be easily computed. Recall that nt = ∑N
i=1 ni

t + Poisson(γ), where ni
t ∼ Poisson(Rtφ

i
t).

Using the Poisson superposition theorem, we have that nt ∼ Poisson(∑N
i=1 Rtφ

i
t + γ) (while

φt is a deterministic function of n1...nt−1). Accordingly, we have that

log M(n|R, γ) =
T

∑
t=1

log Pr[nt|n1...nT]

=
T

∑
t=1

nt log (Rtφt(n) + γ)− e (Rtφt(n) + γ)− log nt!
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where the second line substitutes the Poisson log-likelihood. This expression can be easily

differentiated with respect to R and γ in closed form. Accordingly, we obtain an unbiased

estimate of the gradient of our lower bound by sampling n ∼ M(R, γ) and computing

∇R,γ log M(n|R, γ) log p(x|n).

This suffices to estimate the gradient with respect to (R, γ). However, our goal is to

differentiate with respect to µ and Σ, which control the distribution over (R, γ). Fortunately,

R and γ are continuous. So, we can exploit the reparameterization trick by writing (R, γ) as

a function of a random variable whose distribution is fixed. Specifically, since Σ is positive

semi-definite, it has a Cholesky decomposition Σ = LLT (for convenience, we actually

optimize over L instead of Σ). Sampling a standard normal variable ξ ∼ N(0, I) and lettingR

γ

 = µ + Lξ is equivalent to sampling R, γ ∼ N(µ, Σ). We rewrite the lower bound as

g(µ, Σ) = Eξ∼N(0,I)

[
E

n∼M(R(ξ),γ(ξ))
[log p(x|n)]

]
where µ and L appear only as parameters of the deterministic function expressing R and

γ in terms of ξ, instead of in the distribution of a random variable. Taking a sample from

each of the expectations and substituting the score function estimator now gives the desired

expression for ∇̂.

Using Theorem 24, our final gradient estimator will sample b values for ξ, run the model

M once for each of the resulting values of R to sample n, and then compute

1
b

b

∑
k=1
∇µ,L log M(n(k)|R(ξ(k)), γ(ξ(k))) log p(x|n(k)),

easily accomplished with standard autograd tools given the closed-form expressions for

R(ξ), γ(ξ), and log M(n|R). In practice, we also use the mean log p(x|n(k)) as a simple

control variate to reduce variance [SB98].
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Longitudinal 0.5% 1% 2% 5%

WT 0.481 ± 0.147 0.405 ± 0.11 0.395 ± 0.0947 0.401 ± 0.113
Cori 1.74 ± 0.774 1.18 ± 0.573 0.806 ± 0.373 0.546 ± 0.212

EpiNow 0.329 ± 0.211 0.265 ± 0.145 0.25 ± 0.135 0.267 ± 0.16
GPRt 0.228 ± 0.0713 0.2 ± 0.055 0.183 ± 0.0579 0.186 ± 0.0692

Cross-sectional 0.05% 0.1% 0.2% 0.5%

WT 0.474 ± 0.149 0.396 ± 0.132 0.369 ± 0.102 0.358 ± 0.101
Cori 1.3 ± 0.676 0.859 ± 0.442 0.554 ± 0.184 0.502 ± 0.197

EpiNow 0.306 ± 0.199 0.277 ± 0.174 0.294 ± 0.184 0.302 ± 0.205
GPRt 0.215 ± 0.063 0.178 ± 0.0509 0.177 ± 0.049 0.172 ± 0.0471

Uniform underreporting 1% 2% 5% 10%

WT 0.395 ± 0.105 0.389 ± 0.106 0.377 ± 0.111 0.382 ± 0.104
Cori 0.892 ± 0.552 0.614 ± 0.355 0.412 ± 0.162 0.38 ± 0.108

EpiNow 0.311 ± 0.193 0.31 ± 0.186 0.359 ± 0.231 0.394 ± 0.245
GPRt 0.204 ± 0.0806 0.22 ± 0.0878 0.181 ± 0.0677 0.181 ± 0.0467

Table 13.1: Mean absolute error of each method averaged over instances and time points for each setting, along
with standard deviation of the absolute error. Individual column headings give the percentage of the population
enrolled in testing. Results shown for PCR testing in the outbreak testing; see appendix for a complete version
of the table with serological testing and the random trend setting.

13.2.4 Computing the Likelihood

We now turn to the task of computing the log-likelihood function log p(x|n), which mea-

sures the log-likelihood of observing the sequence of positive test results x given n new

infections per day. Unfortunately, the log-likelihood is not available in closed form for

any of the settings that we consider because it depends on additional latent variables (e.g.,

tconvert, trevert, c, or A). We will show that it suffices to develop an estimator which lower-

bounds the log-likelihood and that such estimators can be efficiently implemented for each

of the observation models we consider. Specifically, denote the collection of latent variables

used in a particular observation model as α. Then, we have

log p(x|n) = log
(

E
α
[p(x|n, α)|n]

)
,

which presents a similar difficulty as in developing our earlier lower bound: sampling α to

approximate the inner expectation does not result in an unbiased estimator due to the outer
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log. Using Jensen’s inequality in the same way gives

log p(x|n) ≥ E
α
[log p(x|n, α)|n] ,

and so substituting the right-hand side into our variational objective preserves validity of

the lower bound. The RHS has the crucial advantage that we can now develop an unbiased

estimator by drawing a single sample of α, which can then be substituted into the stochastic

gradient estimator of Theorem 24. That is, for each of the simulation results n(1)...n(b)

we sample a corresponding value for the latent variables, α(1)...α(b) and use the gradient

estimator

1
b

b

∑
k=1
∇µ,L log M(n(k)|R(ξ(k)), γ(ξ(k))) log p(x|n(k), α(k))

This works without issue for the uniform undersampling and cross-sectional models where

we can obtain a closed form for the log likelihood after conditioning on the appropriate

latent variables. However, the longitudinal testing model presents additional complications.

In particular, after sampling the latent variables tconvert, trevert, and At, the number of positive

tests becomes deterministic quantity. Denote this simulated trajectory of positive tests x̃.

If x̃ = x, then p(x| tconvert, trevert, A) = 1 and otherwise p(x| tconvert, trevert, A) = 0. This

renders the above gradient estimator useless because log p(x|n(k), α(k)) = −∞ unless the

simulated trajectory exactly matches the observed data (a very low-probability event). While

−∞ is technically a valid lower bound for the variational objective, it is not very useful for

optimization. Essentially, we need to develop a lower-variance estimator where the lower

bound is more useful.

We now present one such improved estimator. The intuition is that we can marginalize

out a great deal of the randomness in the naive estimator by only revealing the results of

random draws determining At a single individual at a time. We start by sampling tconvert and

trevert. Note that we can expand log p(x|n, tconvert, trevert) = ∑T
t=1 log p(xt|x1...xt−1, n, tconvert,

trevert) and consider the likelihood at each day t after conditioning on the results observed

on previous days. To compute an estimate for this sum, we introduce a new object, the
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Figure 13.2: Observed xt and the distribution over Rt returned by each method on an example in the outbreak
setting with longitudinal sampling, d = 14, and a 1% sample. The green line gives the ground truth Rt.

series of matrices Ct. At each time t, Ct[t1, t2] denotes the number of individuals who have

tconvert = t1, trevert = t2, and have not yet actually tested positive by time t. Since At is

selected uniformly at random from the population, independent of the infection process,

the xt individuals who test positive on day t are drawn uniformly at random from the set of

all individuals who converted between days t− d and t, and who have not yet reverted. Let

ndraws denote the number of individuals in At who have not yet tested positive by time t and

nconv = ∑t
t1=t−d ∑T

t2=t+1 Ct[t1, t2] denote the number of individuals who are “eligible" to test

positive at time t. Now xt|x1...xt−1, n, Ct follows a binomial distribution with ndraws draws

and success probability nconv
N−∑t−1

i=1 xi
. Accordingly, the log-likelihood log p(xt|x1...xt−1, n, Ct)

can be computed in closed form. After this, we can sample Ct|Ct+1 by selecting a uniformly

random individual to remove from Ct+1. We can view this as iteratively revealing the

test-positive members of At after conditioning on the sequence of previous test results,

instead of sampling the entire set up front as in the naive method.
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13.3 Experimental Results

We test the performance GPRt vs standard baselines on a wide variety of settings. We choose

three baselines which have been recommended by leading epidemiologists as methods of

choice for COVID-19 [GMB+20]. First is the Wallinga-Teunis (WT) method [WT04], which

uses the distribution of the time between an infected person and their secondary infections

to simulate possible who-infected-who scenarios, each of which induces a particular Rt.

WT assumes that cases are observed exactly and that there is no delay in observation.

Second is the method of Cori et al. (Cori) [TSvG+19, CFFC13] which computes a Bayesian

posterior distribution in a similar Poisson branching process infection model. The difference

is that their method does not place a GP prior over Rt (instead the posterior factorizes

over time) and does not model the sampling method or delays. For both WT and Cori,

we apply a common heuristic to correct for time-to-reporting delays, which is shift the

method’s predictions by the mean delay. Third is EpiNow [AHT+20], a MCMC method

recently developed for COVID-19 which places a GP prior over R and accounts for the delay

distribution, but does not model partial observability.

We test each method in an array of settings, with different distributions for both the true

value of Rt and the observations. We include two different settings for the ground truth

Rt. First, the outbreak setting where R starts below 1 and rises above 1 at a random time.

Second, the random trend setting where R follows a linear trend which changes randomly at

multiple points in time. Details of the settings and other experimental parameters are in the

appendix.

We also include different observation models characterized by the test used, the sampling

method, and the sample size. We include both PCR and serological tests, using previously

estimated distributions for D [KLL+20, IJN+20]. We also include three sampling models

introduced earlier: uniform underreporting, cross-sectional, and longitudinal. Finally, for each

of the four combinations of tests and sampling method, we include four different sample

sizes. Many sizes model a challenging setting with sparse observations, representing

highly limited testing capacity. Note that the sample sizes evaluated are different for each
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Figure 13.3: Calibration of each method for cross-sectional testing. Top row: PCR. Bottom row: serological.
The number in the upper-left hand corner of each column gives % tested per day. Each individual plot shows
the calibration of each method for that setting. Each (x, y) point gives the fraction of the ground truth data
points (y) which are covered by the method’s posterior interval at level x. So, e.g., a point placed at (0.6, 0.7)
would indicate that 60% of the ground truth data points fell into the method’s 70% credible interval. The
dashed diagonal line shows perfect calibration and points lying closer to this line indicate better calibration.

method because they have different interpretations, e.g. 1% in the cross-sectional case means

sampling 1% of the population each day while in the longitudinal case it would mean

1% every d days. For each setting, Table H.2 shows the mean absolute error between the

posterior mean R produced by each method and the ground truth. Each entry averages

over 100 instances. For longitudinal testing we use d = 14; results for other values are very

similar (see appendix).

Across almost all settings, our method has lower MAE than any baseline, often by a substantial

margin (reducing error by a factor of 2-10x). Notably, GPRt performs well even with extremely

limited data (e.g., when testing 0.05% of the population per day or when 1% of infections

are observed). Performance improves with more data, but the gains limited (e.g., 0.02-0.04

MAE), indicating that our method is able to make effective use of even very sparse data.

Figure 13.2 shows a representative example. The observed data is quite sparse, with 0-8

positive tests observed per day. Our method recovers a posterior which closely tracks the

ground truth. WT produces an estimate which is correlated with the ground truth but has
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many fluctuations and overly tight confident intervals. Cori is not appropriate for data this

sparse and produces a widely fluctuating posterior. EpiNow does not return an estimate

for much of the time series, only estimating the part with denser observations (we gave the

baselines an advantage by only evaluating their MAE where they returned an estimate).

Moreoever, even in the higher-observation portion, it is less accurate than GPRt.

Finally, Figure 13.3 shows calibration, a metric which evaluates the entire posterior (not

just the mean). Intuitively, calibration reflects that, e.g., 90% of the data should fall into the

90%-credible interval of the posterior. Calibration is critical for the posterior distribution

to be interpretable as a valid probabilistic inference, and for it to be useful in downstream

decision making. Figure 13.3 shows the fraction of the data which is covered by the credible

intervals of each method. This figure shows cross-sectional testing in the outbreak setting,

but results for other settings are very similar (see appendix). GPRt is close to perfectly

calibrated (the dotted diagonal line) while the baseline methods are not well calibrated. The baselines

suffer from two problems. First, as to be expected from their higher MAE, they are biased

and so their credible intervals often exclude the truth. Second, they are over-confident:

paradoxically, their calibration worsens with increased data since the larger sample size

makes them more confident in their erroneous prediction. We conclude that GPRt offers

better calibrated inferences than the baselines, giving reason to think that Bayesian methods

which explicitly incorporate partial observability could be uniquely helpful in downstream

tasks.
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Chapter 14

Conclusion

This thesis presents a set of contributions in both the technical foundations and practical

deployment of AI for public health. On a technical level, this work focuses on the develop-

ment of optimization algorithms and machine learning models which are able to effectively

integrate the process of acting under uncertainty, particularly with limited data and in

the context of networked interactions. Specific contributions include the development of

algorithms for influence maximization on unknown networks (Chapter 1), submodular

optimization under uncertainty (Chapters 2 and 6), methods for incorporating discrete

optimization into the training of machine learning models (Chapters 8 and 10), and Bayesian

inference methods for partially observed epidemic processes (Chapter 13). Together, these

methods help bridge the entirety of the data-decisions pipeline, which spans the process

of gathering potentially costly data, using that data to train machine learning models, and

using those models to drive downstream decision-making via optimization.

We have also applied these techniques to concrete problems of social importance; indeed,

much of the work in this thesis was undertaken from the start in collaboration with nonprofit

organizations or experts in public health and social work. Chapters 3 and 4 presented the

development and deployment of an AI-augmented intervention for HIV prevention amongst

youth experiencing homelessness. We evaluated this system in a field trial enrolling over

700 youth and demonstrated that it reduced key risk behaviors for HIV. To our knowledge,
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this comprised the first successful evaluation of AI methods for social network interventions

in health. Chapter 9 showed how the decision-focused learning techniques that were

introduced to integrate discrete optimization and machine learning can be applied to the

problem of targeting interventions for tuberculosis treatment. Finally, Chapter 12 used

agent-based modeling and Bayesian inference to answer key scientific questions about the

dynamics of COVID-19 outbreaks in early hotspots.

A great deal of work remains to be done. Fundamentally, I believe that our under-

standing of how AI can be used to support community-driven interventions is still in its

infancy. Across a range of interconnected domains – public health, social work, education,

development, sustainability, and more – questions recur about how we can use data to better

understand hard-to-measure social dynamics and formulate interventions which improve

human welfare and access to opportunity. These domains present unique challenges for

AI researchers. We often come to them as outsiders, needing to build relationships and

learn a new context before we can understand how AI might fit into the picture at all. Data

might be limited, or expensive to collect when it needs to be gathered by people. Trust in AI

methods might be hard to build. Operational challenges may arise throughout the process

of an attempted deployment. Methods which are robust, actionable, parsimonious with

data and resources, and which humans can decide how and when to trust will have the

greatest chance of making an impact.

Specific challenges for future work can be found in all of the areas covered by this thesis.

For example, in the setting of networks and influence maximization, how can we develop

a more empirically-grounded view of the dynamics of social influence? Can influence

reasonably be modeled as a submodular function, or do more complex dynamics need to

be incorporated into our algorithms? Increasing returns might easily occur when network

ties help to consolidate benefits or buffer against shocks (e.g., the role of social connections

in maintaining newly adopted healthy behaviors or providing assistance after financial

setbacks). Targeting interventions subject to these self-reinforcing social dynamics requires

new computational foundations since the existing influence maximization literature is built
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almost entirely on assumptions of decreasing returns (formally, submodularity).

In the setting of integrating machine learning and optimization, one challenge for

future work is to couple discrete optimization and reinforcement learning for sequential

decision-making. So far, my work has focused on integrating solvers for single-shot discrete

optimization problems into deep learning. However, in both health and a wide range

of other fields, no single decision is made in isolation. Rather, a sequence of choices is

made, with new information learned at each step. Standard RL approaches are aimed at

settings with either a small number of discrete actions, or else a continuous space. However,

real-world resource allocation problems often pose a combinatorial set of possible actions

at each stage. How can we develop methods which embed algorithmic structure from the

discrete optimization literature into the architecture of reinforcement learning agents, giving

them the tools to reason about combinatorial spaces?

In the context of computational epidemiology, how do we develop more expressive

models which can integrate together disparate sources of data? Outbreak data features

a range of modalities (case counts, hospitalizations, serological surveys, crowdsourced

symptom reports, smartphone mobility data, etc.) and geographic scales (from nations

and states, to cities, to individual schools or workplaces). Observations at all scales may

be noisy and biased, with especially sparse observations at fine scales. It is difficult to

synthesize these data sources into a principled probabilistic view of the outbreak across

scales. Could we develop methods, perhaps drawing on deep generative models and graph

representation learning, which can make sense of new kinds of social and epidemiological

data? Additional challenges arise in attempting to parse out other forms of heterogeneity;

for example, considering variations over time in crucial factors like transmissibility, fatality

rates, behaviors, and policies. Better methods are needed to support scalable inference

in these more complex models, and to distinguish when specific parameters are even

identifiable from the available data and when they are not.

On a broader level, the academic community has a great deal of work ahead in order to

train researchers who can take on the challenge of interdisciplinary, community-oriented
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work involving AI. These projects require many skills which are absent from standard cur-

ricula, some of which are difficult to develop in a typical classroom setting. Work on social

challenges typically requires the ability to collaborate closely with domain experts outside

of computer science (e.g., public health, medicine, or social work). Such collaborations

are much richer if both parties develop a common language and have some familiarity

with the basics of each other’s disciplines. Students should have opportunities to augment

computational coursework with introductory training in application domains of interest to

develop this fluency. Computer science students might also benefit from supplementary

methodological training in areas such as biostatistics or econometrics, to acquire the tools

to rigorously evaluate the results of implementing an intervention. However, coursework

in any of these areas can only set the foundations for productive engagement with other

disciplines. There are many additional skills which are gained only through experience.

For example, the process of identifying how potential targets for intervention relate to

computational capabilities, investigating data sources, developing appropriate models or

formulations, and iterating in response to feedback or pilot tests are all critical components

of successful AI-augmented interventions. Also necessary are various "soft skills" in inter-

disciplinary collaboration; e.g., developing a real understanding of the capabilities, motives,

and incentives of domain experts or other stakeholders. Computer science students need

opportunities to work through these issues themselves, with support from faculty. Such

opportunities may come through joint courses with students in other disciplines, interdisci-

plinary research projects, programs which facilitate engagement with outside organizations,

or a variety of other mechanisms.

No single technical advance will suffice to solve a complex social problem. However, I

am confident that AI researchers have a role to play, if we are able to work in concert with

domain experts, nonprofit organizations, governments, and community members. It is these

broader coalitions that will be needed to drive real change. By simultaneously building the

foundations of a more actionable AI and taking as inspiration the needs of those around us,

I hope that we will rise to the challenge of creating inclusively beneficial AI.
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Appendix A

Appendix to Chapter 1

A.1 Theoretical analysis of ARISEN

In this section, we present proofs of our guarantees for the performance of ARISEN.

A.1.1 Preliminaries

We study influence maximization using local information on a graph drawn from the

stochastic block model (SBM). There is a fixed vertex set V, where |V| = n is known to the

algorithm. The vertices are partitioned into communities C1...CL where each Ci ⊆ V. We

assume that the communities are ordered as |C1| ≥ |C2| ≥ .... ≥ |CL| The set of edges is

sampled according to the following process:

1. Each edge (u, v) where u and v belong to the same community is independently

present with probability pw.

2. Each edge (u, v) where u and v belong to different communities is independently

present with probability pb.

Influence propagates according to the independent cascade model (ICM) where each

edge has equal propagation probability q. This process can be viewed as follows. Each edge

in the graph is independently kept with probability q and discarded with probability 1− q.
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Then, a node is influenced by a given seed set if it lies in the same connected component

as a seed. The intuition for this view (which originated with Kempe et al. [KKT03]) is that

flipping all of the process’s random coins in advance is equivalent to flipping them one

at a time, as each node is influenced. The SBM and ICM can thus been seen as jointly

inducing a graph where each within-community edge is present with probability pwq and

each between-community edge is present with probability pbq.

The algorithm has a budget of K nodes which it may select as seeds. We assume without

loss of generality that L ≥ K. If L < K, then all claims follow by analyzing the expected

utility on C1...CL instead of C1...CK. Let fE(S) give the expected number of nodes influenced

in the independent cascade model by the set of nodes S when the set of realized edges are

E. Let OPT(E) give the greatest influence spread using any subset of K nodes when the

realized edges are E. Our algorithm is denoted by A; the set containing its selections given

edge set E is denoted by A(E). Note that since A is randomized, A(E) is itself a random

variable. We aim to prove that

E[ fE(A(E))] ≥ α E[OPT(E)]

for some approximation ratio α. The expectations range over the randomness in the

realization of E and the decisions of A. Let OPT = E[OPT(E)].

We now state some facts about Erdős-Rényi random graphs which will be useful for our

analysis. The following lemma can be found in any reference on random graphs (see, e.g.

Janson, Luczak, and Rucinski [JLR11]):

Lemma 16. Let G(n, p) be the Erdős-Rényi graph on n vertices with connection probability p.

• If np > log n, then with probability 1− o(1), the graph is connected.

• If 1 < np < log n, then with probability 1− o(1) the largest connected component has size

(1 + o(1))βn, where β is the unique solution to the equation β− 1 + exp(−βnp) = 0. All

other components have size O(log n).
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• If np < 1, then with probability 1− o(1) the largest connected component has size O(log n).

In our case, each community is internally an Erdős-Rényi random graph with size |Ci|
and connection probability pw. The portion of each community with is internally connected

under both the SBM and the ICM is the giant connected component of an Erdős-Rényi

random graph with size |Ci| and connection probability pwq. With a slight abuse of notation,

we use the function β(x) to refer to the size of the giant connected component induced by

the SBM/ICM in a community with size x. We impose the following:

Assumption 1. pw = O
(

log n
n

)
, and for all for all communities |Ci|, pw > log |Ci |

|Ci | . Intuitively, the

subgraph formed by each community should be connected, but the graph is still relatively sparse. Our

analysis can be extended to the dense case (e.g., pw = Θ(1)), but this is not the situation of interest

for real world networks.

For the influence process, we require

Assumption 2. For all communities |Ci|, pwq|Ci| > 1. This requires that the ICM and SBM

jointly induce a giant connected component in each community, i.e., that an influence cascade can

reach a linear portion of the community.

We also require that all communities occupy a constant fraction of the graph:

Assumption 3. For all communities Ci, there is some constant c > 0, independent of n, for which

|Ci| > cn

We focus on the case where pb is sufficiently small that the communities in the graph

do not themselves form a giant connected component under the ICM. While it is clearly

possible to prove guarantees for the case where pb is above this threshold (since a linear

portion of the network will be connected and could be hit just by random sampling), this is

not the case we are interested in modeling from an applications perspective. To formalize

the threshold for pb, we require that every community has (in expectation) less than one

live edge to other communities.
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Assumption 4. pbq · (n− |Ci|)|Ci| < 1 ∀Ci.

Lastly, we assume

Assumption 5. pb <
1
n .

This implies that the between-community edges by themselves do not create a giant

connected component in G (which is clearly what we expect in practice).

A.1.2 Summary

ARISEN and its motivation

The idea behind ARISEN is to improve on naive sampling by estimating the size of the

community that each random sample lies in, and then choose the largest communities

for seeding. Each community Ci is an Erdős-Rényi graph which has average degree

di = |Ci|pw + (n− |Ci|)pb. An estimate of di, combined with knowledge of pw and pb, yields

an estimate of |Ci|. di can be estimated by simulating a series of random walk through the

community to obtain a sampled set of degrees.

Having estimated the size of the community that each sampled node lies in, a natural

approach would be to choose the K samples with the largest estimated size as seed nodes.

However, this idea fails because there is no way to tell (using only local information) whether

two sampled nodes lie in the same community: they might lie in different communities

which have very similar average degree. Hence, simply choosing the samples with the largest

estimated size might just seed the same community K times, which gives an approximation

ratio no better than 1
K in the worst case.

The idea that we use to overcome this issue is to independently choose each sample as a

seed with probability inversely proportional to its size. Since large communities are sampled

more often, this inverse weighting “evens out" the sampling bias towards large communities

and ensures that, in expectation, each of the top K communities is seeded exactly once.
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Proof overview

We start by showing that the number of random samples taken in Step 1 is sufficiently large

that every community will be sampled (1± ε)T |Ci |
n times, and that each time it is sampled,

its estimated size Ŝ will be within a multiplicative ε of the true value |Ci|. This ensures that

the top K communities will be assigned total weight close to 1 in Steps (2)-(3). Each one is

hit with probability approximately 1− (1− 1
K )

K ≥ 1− 1/e, and a random sample within the

community lands in the giant connected component induced by the ICM with probability

β(|Ci|). The major challenge is to control the effects of sampling error. While standard

concentration bounds suffice to show that the estimates taken in Step 1 are accurate to

within relative error ε, the weights are truncated in Step 3. This has the potential to amplify

small errors in sampling, so the bulk of the analysis is spent in ensuring that the total utility

remains close to a β̄(1− 1/e) fraction of the top K communities after Step 3.

We then prove a bound on γ when pb > 0. The intuition is that OPT can be bounded

by the combined size of the largest K connected components in a subcritical Erdős-Rényi

graph in which each community forms a node. However, formalizing this intuition requires

a more intricate analysis.

A.1.3 Proof of main approximation result

Theorem 25. For any ε < 1
K , ARISEN can be implemented using O

(
1
ε4 log(n) log2 ( 1

ε

)
log log

( 1
ε

))
samples with approximation ratio (

1− 1
e
− ε− o(1)

)
· β̄ · γ.

This is obtained by setting T = O
( 1

ε2 log 1
ε

)
and O

( 1
ε2 log(n) log

( 1
ε

)
log log

( 1
ε

))
.

Proof.

We start out by stating a simple bound on OPT:

Lemma 17. With probability 1− o(1), OPT ≤ 1
γ ∑K

i=1 β(|Ci|)|Ci|.

Proof. If all between-community edges are removed G, the set of nodes influenced by OPT
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is upper bounded by the total size of the K largest connected components when each

within-community edge is sampled with probability qpw. Via Lemma 16, with probability

1− o(1), each community Ci has a giant connected component of size β(|Ci|)|Ci|, with all

other components having size O(log |Ci|). Via Assumption 3, all communities have size

scaling as Θ(n), so for any Ci, Cj, the giant connected component in Ci is larger than the

second largest connected component in Cj. Hence, the K largest connected components

correspond to the giant connected components of the K largest communities. Using the

definition of γ completes the proof.

Analysis of Step 1

Step 1 nests two levels of sampling: T nodes are sampled uniformly at random from the

entire graph, and then R samples are taken from the community that each of these nodes lie

in. Define ρ = |CK |
n to be the fraction of the graph occupied by the K-th largest community.

Note that ρ = Θ(1). At this point, we set T = 96
(

1
ε2ρ

)
log 1

ερ . We will first show that, at the

outer level, the number of times that each community is sampled is concentrated well. Then,

we will show that the inner loop accurately estimates the size of each sampled community.

The first claim follows from a straightforward application of the Chernoff bound. The

second claim requires a more involved analysis of our random walk sampler. The following

two lemmas formalize these guarantees on the output of Step 1. Their proofs are given in

Section A.1.4.

Lemma 18. Let Xi
j be the indicator variable for the event that sample j lands in community Ci. With

probability at least 1− ε,

(
1− ε

2

)
T
|Ci|
n
≤

T

∑
j=1

X j
i ≤

(
1 +

ε

2

)
T
|Ci|
n

holds for all i with |Ci| ≥ (1− ε)|CK|.

Lemma 19. There are settings R = O
( 1

ε2 log n log T
)

and B = O(log n log 1
ε ) such that, across

all T iterations, given R random walk samples each sampled community C, the estimated size d̂

satisfies
(
1− ε

4

)
pw|C| ≤ d̂ ≤

(
1 + ε

4

)
pw|C| with probability 1− o(1)
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Corollary 1. With probability at least 1− o(1),
(
1− ε

2

)
|Ci| ≤ Ŝi ≤

(
1 + ε

2

)
|Ci| holds for every

i = 1...T.

Proof. We estimate the size as Ŝ = d̂−npb
pw−pb

. We now show the upper bound on Ŝ; the argument

for the lower bound is exactly the same.

Ŝ ≤ (1 + ε
4 )(pw|Ci|+ (n− |Ci|)pb)− npb

pw − pb

≤ (1 + ε
4 ε)(pw|Ci|+ (n− |Ci|)pb − npb) +

1
4 εnpb

pw − pb

=
(

1 +
ε

4
ε
)
|Ci|+

1
4 εnpb

pw − pb
.

So, we just need to bound the size of
1
4 εnpb
pw−pb

relative to |C|. We know by Assumption 5

that ε
4 εnpb <

ε
4 . Further, using Assumption 1,

pw − pb >
log |Ci|
|Ci|

− 1
n

≥ log |Ci|
|Ci|

− 1
|Ci|

≥ 1
|Ci|

from which we conclude that
1
4 εnpb
pw−pb

≤ 1
4 ε|Ci|. Thus, Ŝ ≤ (1 + ε

2 )|Ci|.

We emphasize that Lemma 19 applies to all communities that are sampled, not just those

which have size at least (1− ε)|CK|. However, Lemma 18 only applies to communities with

size at least (1− ε)|CK|. That is, each sampled community’s size estimate is accurate, but

small communities may not be reliably sampled. Note that the total query cost is R · T,

which implies the bound in the theorem statement after noting that ρ is constant with

respect to ε and n.
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Analysis of Step 2

We now analyze the probability that each community in the top K is seeded based on the

above estimates. Consider any community Ci ∈ {C1...CK}. Ci is seeded if any of the sampled

nodes from it are chosen in Step 4, and the probability of this event is determined by the

total amount of weight which is allocated to nodes in Ci. In this step, we show that the total

weight assigned to each of the top K communities is close to 1. Formally,

Lemma 20. For any community Ci, let w(Ci) be the total weight assigned to Ci. Suppose that Ci

satisfies

•
(
1− ε

2

)
T |Ci |

n ≤ ∑T
j=1 X j

i ≤
(
1 + ε

2

)
T |Ci |

n

•
(
1− ε

2

)
|Ci| ≤ Ŝi ≤

(
1 + ε

2

)
|Ci| each time Ci is sampled.

Then, 1− ε ≤ w(Ci) ≤ 1 + ε.

Proof. We have

w(Ci) =
T

∑
j=1

1{j ∈ Ci}wj

=
T

∑
j=1

1{j ∈ Ci}
n

ŜjT

≥
(

1− ε

2

)
T
|Ci|
n

n(
1 + ε

2

)
|Ci|T

=
1− ε

2
1 + ε

2

≥ 1− ε

A similar argument shows that w(Ci) ≤ (1 + ε) also holds.

Corollary 2. With probability at least 1 − ε − o(1), 1 − ε ≤ w(Ci) ≤ 1 + ε holds for every

community Ci sampled during Step 1 with Ŝi > 0.

Proof. Via Lemma 18 and Corollary 1 (and union bound), we can apply Lemma 20 to each

community sampled in Step 1 with total probability at least 1− ε.
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Analysis of Steps 3 and 4

Now, we need to analyze the impact of the truncation in Step 3. If the size of every

community were perfectly estimated, then this step would set the weight of each community

with size less than CK to zero, leaving only C1...CK to be seeded in Step 4. The following

analysis controls the loss that can be suffered due to sampling errors.

For instance, it is possible that CK could have “borderline" size arbitrarily close to |CK+1|,
in which case much of this weight may be truncated in favor of samples from CK+1. For

this to occur, a sample from CK+1 must have estimated size higher than a sample from CK.

But since the size of each sampled community is well-estimated, this implies that |CK+1| is

actually very close to |CK|, so not much is lost.

We now formalize this intuition. Recall that Step 3 calculates a threshold τ: the algorithm

keeps all samples j where Ŝj ≥ τ and discards those with Ŝj < τ by setting wj = 0. Let

w(Ci) denote the total weight of community Ci before truncation and wT(Ci) denote its total

weight after truncation. We define four sets of communities

• Small = {Ci| |Ci| < 1− ε
2

1+ ε
2
|CK|}. These are communities we would like to show never

displace samples from communities in the other three sets.

• A = {Ci| 1− ε
2

1+ ε
2
|CK| ≤ |Ci| < |CK|}. These are communities with size less than |CK|, but

which we might not be able to detect and truncate due to sampling errors.

• B = {Ci| |CK| ≤ |Ci| ≤ 1+ ε
2

1− ε
2
|CK|}. These are communities with size at least |CK|, but

which are small enough that they might be confused with communities in A.

• Large = {Ci| |Ci| > 1+ ε
2

1− ε
2
|CK|}. These are communities we would like to show are

never truncated.

First, we show that communities in Small and Large behave well under truncation, in

the sense that no samples from Large are truncated and no samples from Small displace

samples from B ∪ Large. In what follows we condition on the events in Corollaries 1 and 2.

Lemma 21. wT satisfies the following conditions:
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• wT(Small) ≤ K− wT(B)− wT(Large)

• wT(Large) = w(Large) ≤ |Large|+ ε|Large|

Proof. If a community Ci is in Small, then the size estimated for each of its samples satisfies

Ŝ ≤
(

1 +
ε

2

)
|Ci| <

(
1 +

ε

2

)(1− ε
2

1 + ε
2

)
|CK| =

(
1− ε

2

)
|CK|

Hence, samples from communities in Small will always have estimated size less than

every sample from B ∪ Large, from which the first claim follows. The same logic shows that

every sample from communities in Large has estimated size higher than every sample from

CK. This implies (via ∑K−1
i=1 w(Ci) ≤ (K− 1) + ε(K− 1)) that each sample’s estimated size

lies above τ, proving the second claim.

We recall here that choosing a random sample from a community Ci has probability

β(|Ci|) of hitting the giant connected component induced by the ICM, in which case it

influences a fraction β(|Ci|) of the nodes in the community. Hence, the total expected utility

is

∑
Ci

β(|Ci|)2Pr[Ci is seeded]|Ci| ≥ ∑
Ci∈A∪B∪Large

β(|Ci|)2Pr[Ci is seeded]|Ci|

We refer to the value of the above summation restricted to a particular set of communities

as the total utility obtained from that set. We now proceed to bound the total utility obtained

from A ∪ B, and then the total utility obtained from Large.

Lemma 22. The total utility obtained from A ∪ B is at least

(|B| − 4εK)
(

1− 1
e

)
· β((1− ε)|CK|)2(1− ε)|CK|.

Proof. Via Lemma 21, at least K − |Large| − ε|Large| = |B| − ε|Large| weight must be

allocated to communities in A and B. Hence, the total expected utility obtained from these

communities is
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∑
Ci∈A∪B

β(|Ci|)2Pr[Ci is seeded]|Ci| = ∑
Ci∈A∪B

β(|Ci|)2

(
1−

(
1− w(Ci)

K

)K
)
|Ci|

≥ ∑
Ci∈A∪B

β(|Ci|)2
(

1− e−w(Ci)
)
|Ci|

≥ β ((1− ε)|CK|)2 (1− ε) |CK| ∑
Ci∈A∪B

1− e−w(Ci). (A.1)

Given the above constraints on the total amount of weight allocated to each community,

the value of Equation (A.1) is at least the value of the following optimization problem:

min β ((1− ε)|CK|)2 (1− ε) |CK| ∑
Ci∈A∪B

1− e−w(Ci)

w(Ci) ≤ 1 + ε ∀Ci ∈ A ∪ B

∑
Ci∈A∪B

w(Ci) ≥ |B| − ε|Large|

Here the first constraint is due to Corollary 2, and the second is due to the argument

at the start of this lemma. Let Q be the optimal value of the above optimization problem.

The objective is the sum of identical concave functions in each variable w(Ci). Hence, the

minimum is achieved when as many of the w(Ci) as possible are set to 1 + ε, with one

community receiving the leftover weight. Specifically,
⌊
|B|−ε|Large|

1+ε

⌋
communities receive

weight 1+ ε. Since ε < 1
K ,
⌊
|B|−ε|Large|

1+ε

⌋
= |B| − 1. Hence, the remaining community receives

weight

|B| − ε|Large| − (1 + ε)(|B| − 1) ≥ 1− ε|Large| − ε|B| = 1− εK

Hence, we can lower bound Q as

Q ≥
(
(|B| − 1)

(
1− e−(1+ε)

)
+
(

1− e−(1−εK)
))
· β((1− ε)|CK|)2(1− ε)|CK|

≥
(
|B|
(

1− e−(1+ε)
)
− (eεK − eε)

)
· β((1− ε)|CK|)2(1− ε)|CK|

≥
(
|B|
(

1− e−(1+ε)
)
−
(

1
1− εK

− eε

))
· β((1− ε)|CK|)2(1− ε)|CK|
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≥
(
|B|
(

1− e−(1+ε)
)
− (1 + 2εK− eε)

)
· β((1− ε)|CK|)2(1− ε)|CK|

≥
(
|B|
(

1− e−(1+ε)
)
− 2εK

)
· β((1− ε)|CK|)2(1− ε)|CK|

≥ (|B| − 4εK)
(

1− e−(1+ε)
)
· β((1− ε)|CK|)2(1− ε)|CK|

≥ (|B| − 4εK)
(

1− 1
e

)
· β((1− ε)|CK|)2(1− ε)|CK|

Lemma 23. The total utility obtained from Large is at least ∑Ci∈Large β(|Ci|)2|Ci|
(
1− 1

e − ε
)
.

Proof. Follows directly from Lemma 21, which implies that every Ci ∈ Large satisfies

w(Ci) ≥ 1− ε. As a result, Pr[Ci is seeded] ≥ 1− e−(1−ε). Then, we have

1− 1
e1−ε

≥ 1− 1
1− ε

1
e

≥ 1− (1 + 2ε)
1
e

≥ 1− 1
e
− ε.

After some more algebra, this leads to our final bound on the total utility:

∑
Ci∈A∪B∪Large

β(|Ci|)2Pr[Ci is seeded]|Ci|

≥ |B|
(

1− 1
e

)
· β((1− ε)|CK|)2(1− ε)|CK|+ ∑

Ci∈Large
β(|Ci|)2|Ci|

(
1− 1

e
− ε

)
−

4εKβ((1− ε)|CK|)2|CK|
(

1− 1
e

)

≥
K

∑
i=1

(
1− 1

e
− ε

)
(1− 4ε)β((1− 3ε)|Ci|)2(1− 3ε)|Ci|

Now, we consider the term β((1− 3ε)|Ci|). We abuse notation now and write β as a function

of the average degree d̄ in the influence graph It is known that

β(d̄) = 1 +
1
d̄

W(−d̄e−d̄) + o(1)
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where W is the Lambert W function. Taking derivatives yields

d
dd̄

β(d̄) = − 1
d̄2

W(−d̄e−d̄) +
1
x
· 1

eW(−d̄e−d̄) − d̄e−d̄

which over d̄ > 1 (as guaranteed by Assumption 2) satisfies | d
dd̄ β(d̄)| ≤ 1. Accordingly, we

have that

β((1− 3ε)|Ci|) ≥ β(|Ci|)− 3ε− o(1) =
(

1− 3ε

β(|Ci|)− o(1)

)
β(|Ci|).

Continuing to bound the total influence spread, we have

K

∑
i=1

(
1− 1

e
− ε

)
(1− 4ε)β((1− 3ε)|Ci|)2(1− 3ε)|Ci|

≥
(

1− 1
e
− ε

)
(1− 4ε)

(
1− 3ε

mini=1...K β(|Ci|)
− o(1)

)2 K

∑
i=1

β(|Ci|)2|Ci|

≥
(

1− 1
e
− 11ε

mini=1...K β(|Ci|)
− o(1)

) K

∑
i=1

β(|Ci|)2|Ci|

By Lemma 17, OPT ≤ 1
γ ∑K

i=1 β(Ci)|Ci|. Accordingly, we would like to bound the term

∑K
i=1 β(|Ci|)2|Ci|

∑K
i=1 β(|Ci|)|Ci|

.

Define β̄ = 1
K ∑K

i=1 β(|Ci|) to be the average size of the giant component induced by the

influence process in the largest K communities. Since |C1| ≥ |C2| ≥ .... ≥ |CK|, we have that

K

∑
i=1

β(|Ci|)2|Ci| ≥ β̄
K

∑
i=1

β(|Ci|)|Ci|.

To conclude, we recall that in earlier steps we conditioned on events in the sampling

procedure and the randomness of the graph which had combined probability 1− ε− o(1).

Adding this up gives

E[ fE(A(E))] ≥ (1− ε− o(1))
(

1− 1
e
− 11ε

mini=1...K β(|Ci|)
− o(1)

)
β̄ · γ ·OPT

≥
(

1− 1
e
− 12ε

mini=1...K β(|Ci|)
− o(1)

)
β̄ · γ ·OPT

and so now running the algorithm with ε′ = 1
12 mini=1...K β(|Ci |)ε = Θ(ε) suffices to obtain the
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desired approximation guarantee.

A.1.4 Concentration lemmas

We now prove that the various estimates that the algorithm takes in Step 1 are sufficiently

accurate. We make frequent use of the Chernoff bound:

Lemma 24 ([MR10]). Let X1...XN be independent binary random variables. Let X = ∑N
i=1 Xi and

µ = E[X].

• For 0 < δ < 1, Pr[|X− µ| ≥ δµ] ≤ 2e−
δ2µ

3 .

• For δ > 1, Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3

We now proceed to prove Lemmas 18 and 19.

Proof of Lemma 18. Note that E[∑T
j=1 Xi

j] = T |Ci |
n Via the Chernoff bound, we have that

Pr

[∣∣∣∣∣ T

∑
j=1

Xi
j − T

|Ci|
n

∣∣∣∣∣ > ε

2
T
|Ci|
n

]
≤ 2 exp

(
− 1

12
ε2T
|Ci|
n

)
≤ 2 exp

(
− 1

24
ε2T(1− ε)ρ

)
(|Ci| ≥ (1− ε)ρn)

≤ 2 exp
(
−2 log

1
ερ

)
≤ 2(ρε)2.

There are at most 1
(1−ε)ρ

communities of size at least (1 − ε)ρn. By union bound,

concentration holds for each of them with probability at least 1− 2ερ ≥ 1− ε.

Proof of Lemma 19. We recall the lemma statement: There are settings R = O
( 1

ε2 log n log T
)

and B = O(log n log 1
ε ) such that, given R random walk samples from each community C,

the estimated size Ŝ satisfies (1− ε)|C| ≤ Ŝ ≤ (1 + ε)|C| with probability at least 1− o(1)

across all T sampled communities.

Recall that our algorithm runs a random walk on the graph, simulating the presence of

self-loops by adding a random number of extra copies of each node visited. The number of
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self-loops is chosen so that every node has an equal degree ∆ (a parameter to be set later).

By ensuring that every node as an equal degree, the stationary distribution of the random

walk becomes uniform over the vertices. We bound the number of steps in the random walk

that are needed including the steps which follow self-loops; clearly, the number of actual

queries to the graph can only be smaller.

We start by analyzing the degrees of nodes in the graph. As is well-known for Erdős-

Rényi graphs, degrees become tightly concentrated in the regime where the expected degree

is Θ(log n). Here we show that, with high probability, every node in community Ci has

degree Θ(log |Ci|). We condition on this event holding in the remainder of the proof.

Lemma 25. With probability 1− o(1), every node in community Ci has degree Θ(log |Ci|).

Proof. We first prove that for each node v ∈ Ci, dv = O(log |Ci|). Note that dv is the sum

of Bernoulli independent random variables, with expectation µ = Θ(log |Ci|). Using the

Chernoff bound,

Pr [dv > (1 + δ)µ] ≤ e−
1
4 µδ2

and so by taking δ = Θ(1), we obtain that dv = O(log |Ci|) with failure probability at most

1
|Ci |2 . Taking union bound over all |Ci| nodes gives combined failure probability at most

1
|Ci | = o(1).

For the other direction, we use a sharper version of the Chernoff bound:

Pr [dv < (1− δ)µ] ≤
(

e−δ

(1− δ)(1−δ)

)µ

.

We can rewrite the failure probability as

exp (−µ (δ + (1− δ) log(1− δ))) .

Now, note that by Assumption 1, µ > log |Ci|, i.e., there is some constant c > 1 independent
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of n for which µ ≥ c log |Ci|. Now, since as δ → 1, δ + (1− δ) log(1− δ) → 1, there is

some value of δ, which depends only on c, such that δ + (1− δ) log(1− δ) > 1
c , where we

require that the inequality hold strictly. Note that since c does not depend on n, we still have

δ = Θ(1) at this point, ensuring that (1− δ)µ = Ω(log |Ci|). Now the failure probability

is at most 1
|Ci |1+Θ(1) and so after taking union bound over |Ci| nodes, the combined failure

probability is o(1).

We now address two topics. First, we show that each random walk stays within its

starting community with high probability. Second, we show that the average degree in each

community is estimated accurately.

Random walks do not leave their starting community: Our analysis uses the connec-

tion between the conductance of a graph and the properties of random walks on it, so we

start by introducing a few definitions. The volume of a set of nodes S, denoted by µ(S) is

the sum of the degrees of the nodes in S:

µ(S) = ∑
i∈S

di

Let E(S, S− V) denote the set of edges between nodes in S and those in V − S. They

key ratio for our analysis is

Φ(S) =
|E(S, V − S)|

µ(S)
.

This is nearly the same as the normal definition of conductance, which has min(µ(S), µ(V−
S)) in the denominator. However, our analysis depends only on µ(S). The key lemma that

we use relates Φ(S) to the properties of a random walk in S:

Lemma 26 (Spielman and Teng [ST13], Prop. 2.5). The probability that a random walk, started

from a random node of S, stays entirely within S for t steps is at least 1− 1
2 tΦ(S).

We remark that Spielman and Teng stated the lemma for the normal conductance (not

335



our Φ), but their analysis trivially applies to Φ as we have defined it.

Lemma 26 will be used to control the probability that any of the nodes we sample in Step

1c lie outside of the starting community. Fix any Ci. We apply the Chernoff bound to the

numerator and denominator of Φ(Ci) to show that it is close to log n
n with high probability

over the draw of G from the SBM.

First, we show that with high probability, |E(Ci, V−Ci)| ≤ 7 log n
q . Let Z = |E(Ci, V−Ci)|

and note that Z is the sum of (n− |Ci|)|Ci| indicator variables giving whether each possible

between-community edge is present. From Assumption 4, we know that E[Z] < 1
q . Thus

via the Chernoff bound we have

Pr[Z > (1 + 6 log n)E[Z]] ≤ exp
(
−1

3

(
6 log n

q

))
≤ 1

n2

There are at most n total communities, so taking union bound over all of them gives

total failure probability at most 1
n . Conditioned on concentration holding, we have Z ≤

(6 log n + 1)E[Z] ≤ 7 log n
q .

Next, we examine µ(Ci). We have E[µ(Ci)] = pw|Ci|2. By assumption, pw|Ci|2 ≥ |Ci|.
Via Chernoff bound,

Pr

[
µ(Ci) ≤

(
1−

√
6 log n
|Ci|

)
E[µ(Ci)]

]
≤ exp

(
−1

3

(
6 log n
|Ci|

)
|Ci|
)

≤ 1
n2 .

Again via union bound, the total failure probability over all communities is at most 1
n .

Conditioning on the bounds on both the numerator and denominator holding, we have

Φ(Ci) ≤
7 log n(

1−
√

6 log n
|Ci |

)
qpw|Ci|2
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Since qpw|Ci| ≥ 1 by Assumption 2, this implies

Φ(Ci) ≤
7 log n(

1−
√

6 log n
|Ci |

)
|Ci|

=
7 log n

|Ci| −
√

6|Ci| log n

Now we can apply Lemma 26 to bound the probability that the random walk leaves Ci.

In any single iteration, we take R random walk steps, which leave Ci with probability at

most 1
2 RΦ(Ci). There are T iterations in total, so via union bound the total probability that

any random walk leaves its starting community is at most 1
2 Φ(Cmin)RT where Cmin is the

smallest community. This yields

1
2

Φ(Cmin)RT = O
((

1
ε4ρ

)
log2 1

ερ
log log

1
ερ

log n
) 7

2 log n

|Cmin| −
√

6|Cmin| log n

= o(1) (since |Cmin| = Θ(n))

We conclude that the total probability of any random walk leaving its starting community

is at most o(1).

Estimating the average degree: We now introduce some notation dealing with Markov

chains. Suppose a Markov chain has transition matrix P. All Markov chains we consider

will have a unique stationary distribution. Let this distribution be π. The total variational

distance between probability distributions p and q is

dTV(p, q) = sup
x
|p(x)− q(x)|.

The mixing time of a chain is the maximum time needed for the chain to converge to its

stationary distribution:
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tmix(ε) = min{t | sup
x

dTV(1xPt, π) ≤ ε}

tmix := tmix

(
1
4

)
The spectral gap of the chain is 1− λ2, where λ2 is the second eigenvalue of P. Our

analysis will use the well-known connection between the mixing time of a random walk,

the spectral gap, and the conductance. Now, by [HKP12] (Theorem 1.1), we have that since

Ci is an Erdős-Rényi graph of sufficiently large average degree, 1− λ2 = Ω
(

1− 1√
log |Ci |

)
with probability 1− o(1). Let Φ denote the conductance of Ci. Via the Cheeger inequality,

we have that Φ ≥ 1
2 (1− λ2) = Ω

(
1− 1√

log |Ci |

)
. These facts ensure that random walks mix

quickly on Ci.

However, we need to analyze the behavior of the modified random walk where we

add self loops to ensure that every node has ∆ edges. We will choose ∆ = Θ(log n) to be

an upper bound on the largest degree on Ci per Lemma 25. Call the conductance of this

modified random walk Φ̃ and its spectral gap 1− λ̃2. We use the relationship between Φ

and Φ̃ outlined by [DKS14]. Specifically, let e(S, S̄) denote the number of edges between a

set of nodes S ⊆ Ci and Ci \ S. Let d(S) = ∑v∈S dv. For any such subset S, the conductance

on that subset is

Φ(S) =
e(S, S̄)
d(S)

while for the modified graph we have

Φ̃(S) ≥ e(S, S̄)
d(S) + ∆|S| ≥

e(S, S̄)

d(S)
(

1 + ∆
minv∈Ci dv

)
since we add at most ∆ self-loops to each node. But now, since ∆ = Θ(log n), and by

Lemma 25 combined with Assumption 3, minv∈Ci dv = Θ(log |Ci|) = Θ(log n), we have that

Φ̃(S) = Θ(Φ(S)) and so taking the minimum over all subsets S,

Φ̃ = Θ(Φ) = Ω

(
1− 1√

log |Ci|

)
.
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Now, using the Cheeger inequality, we have that

1− λ̃2 ≥
1
2

Φ̃2 = Ω

(
1− 1√

log |Ci|

)
.

Using the well-known connection between the spectral gap and mixing time (see Theorem

12.3 of [LP17]), the mixing time of the modified walk is O

(
log n

1− 1√
log n

)
and after a burn-in

time of O(log n log 1
ε ) steps, the distribution of the walk is within total variational distance

ε of the stationary distribution (which is uniform since all nodes have degree ∆).

We will apply concentration bounds to the the new random walk. We use the following

Bernstein-style concentration bound for the sum of a function of a Markov chain.

Lemma 27 (Paulin [P+15]) Theorem 3.3). Let X1...Xr be a stationary reversible Markov chain

over state space Ω with spectral gap γ and stationary distribution π. Let g ∈ L2(π), with

|g(x)−Eπ[g]| ≤ C for every x ∈ Ω. For every δ > 0 we have

Prπ

[∣∣∣∣∣ r

∑
i=1

g(Xi)−E
π

[
r

∑
i=1

g(Xi)

]∣∣∣∣∣ ≥ δ

]
≤ 2 exp

( −δ2(1− λ2)

4rVarπ(g) + 10δC

)
To account for the fact that the chain does not start at stationarity, we can use a burn in

time of t0 steps, which gives the following bound:

Lemma 28 (Paulin [P+15]) Proposition 3.10). Suppose that the chain starts from distribution q

and we discard the first t0 samples. Let P be the transition matrix. Then

Prq

[∣∣∣∣∣ r

∑
i=t0+1

g(Xi)−E
π

[
r

∑
i=t0+1

g(Xi)

]∣∣∣∣∣ ≥ ε

]

≤ Prπ

[∣∣∣∣∣ r

∑
i=t0+1

g(Xi)−E
π

[
r

∑
i=t0+1

g(Xi)

]∣∣∣∣∣ ≥ ε

]
+ dTV(qPt0 , π).

We will apply this lemma to the random walk Markov chain where the states are the

nodes of the graph and g(v) = dv. Since the stationary distribution of the modified random
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walk is uniform, Eπ[g] = davg. We will use δ = 1
2 rεdavg because this suffices to ensure that

(1− ε)davg ≤
1
r

r

∑
i=t0+1

di ≤ (1 + ε)davg.

In order to apply the lemma to bound the failure probability for the estimate, we just

have to bound the variance and maximum deviation of g. Note that after conditioning

on the event in Lemma 25, O(log |Ci|) is a bound on the largest degree in the graph, and

hence on the variance of the degrees dv as well. Since the mean davg is also Θ(log |Ci|), by

taking R = Θ
( 1

ε2 log n log T
)
, we can ensure that the failure probability is at most 1

nT . After

taking union bound over all T sampling iterations, the combined failure probability is at

most 1
n = o(1). Since the burn-in time is O(log n log 1

ε ), the total number of steps is still

Θ
( 1

ε2 log n log T
)
. This concludes the proof of Lemma 19.

This completes the proof of Theorem 1.

A.1.5 Bounding between-community influence

We prove the following guarantee on the relative sizes of ∑K
i=1 |Ci| and OPT in the pb > 0

setting:

Lemma 29. Let µ = 1
K ∑K

i=1 β(|Ci|)|Ci| denote the average size of the giant components of the top

K communities. Then we have

K

∑
i=1

β(|Ci|)|Ci| ≥
(

1− cmax

12 log n
µ

)
OPT

Proof. Let X1...XK be the sizes of the K largest connected components induced by the SBM

and ICM. We have OPT ≤ E
[
∑K

i=1 Xi

]
. Each Xi contains the giant connected component

in one or more communities. Let C∗i be the (random) community which is the largest

community whose giant component is contained in Xi. Let C∗ be a vector which collects

|C∗1 |...|C∗K|. Clearly, we have ∑K
i=1 |Ci| ≥ E

[
∑K

i=1 |C∗i |
]
. We will now bound the amount by

which E
[
∑K

i=1 Xi

]
can exceed E

[
∑K

i=1 |C∗i |
]
, which in turn lets us bound ∑K

i=1 |Ci| in terms

of OPT.

The crucial step is to bound a single Xi relative to |C∗i |. We show
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Lemma 30. E[Xi|C∗] ≤
(

12
1−cmax

)
log
(

n
|C∗i |

)
β(|C∗i |)|C∗i |

Proof. We analyze a branching process, similar to that used to analyze the subcritical Erdős-

Rényi graph. This process starts at a single node, and then reveals the status of all potential

edges to the remaining nodes. Each edge that exists creates a new child and the process

then explores the edges of each child. The size of the connected component is the total

number of nodes explored by the branching process.

Our analysis will collapse the giant connected component of each community into a

single node in a higher-level branching process. This allows us to bound the total number

of nodes of G that can be absorbed into a connected component. The major challenge for us

to analyze the branching process is that the communities need not have equal sizes, so we

cannot apply the analysis of the Erdős-Rényi graph exactly. We prove that the number of

nodes reached in the true branching process is stochastically dominated by one in which

every community in the graph has size |C∗i |.
Conditioning on C∗ (as in the lemma statement) complicates the branching process

because if a given community is reached, then it has a chance to reach a community

with size above |C∗i |, or to reach a community in one of the other components. Hence,

conditioning on C∗ reduces the probability that the branching process will reach any of the

other communities in the graph. However, the true process is stochastically dominated by a

branching process on the subgraph induced by the communities with size at most |C∗i |; call

this graph GA. Essentially, in this process we ignore that conditioning on |C∗i | can indirectly

limit the number of nodes reached, and that the other components could “compete" with Xi

for nodes. To formalize this reasoning, we define two branching processes:

BP-cond: This is the “true" branching process. Pick a node in C∗i to start from. From

the starting node, reveal the status (live or not) of all edges from this node’s community

to other communities. These revelations follow a distribution which conditions on (1) not

reaching a community with size greater than C∗i or (2) reaching a community which belongs

to the other K − 1 components. Note that the BP-cond’s corresponding to each of the K

largest components could have a complicated joint distribution but we do not need to fully
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describe it (as will be seen below).

BP-A: Pick a node in the largest community of GA. Follow the branching process from

that node using only edges between nodes in GA (but ignoring the two conditions for

BP-cond)

Let Zcond (resp ZA) be a random variable giving the total number of nodes in communities

reached by BP-cond (resp. BP-A). We have

Claim 1. Zcond is stochastically dominated by ZA

Proof. Let Ye ∀e ∈ V ×V be an indicator variable for the event that edge e is live (i.e., it is

present in both the SBM and ICM). Y is a vector which collects all of the Ye. Let h(Y) denote

the total number of nodes reached by the branching process when the status of the edges

are specified by Y . Note that h is monotone nondecreasing in Y . The distribution of Zcond

or ZA can be simulated by drawing Y from the distribution induced by the corresponding

branching process and then returning h(Y). Consider any subset E′ ⊆ {e ∈ V × V}. We

couple Zcond and ZA by having them share Ye for all e 6∈ E′. We have

PrY∼BP-cond|{Ye|e 6∈E′}
[
Ye = 1 ∀e ∈ E′

]
≤ PrY∼BP-A|{Ye|e 6∈E′}

[
Ye = 1 ∀e ∈ E′

]
. (A.2)

To see this, note that under BP-cond, the probability that Ye = 1 ∀e ∈ E′ is either

• The probability of this event under the Ye’s original marginal distribution (drawn from

the SBM and ICM) if setting them equal to 1 would not violate either condition for

BP-cond.

• 0 if setting them to 1 would create a violation

However, BP-A always follows the first case, which assigns at least as high a probability

to the event Ye = 1 ∀e ∈ E′. The claim then follows from Equation A.2 combined with the

monotonicity of h.
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This claim allows us to analyze BP-A in place of BP-cond. However, BP-A is still difficult

to deal with because the sizes of the communities may be different. So, we introduce a

process which simulates a graph where all communities have size |C∗i |.
BP-B: Let GB be a graph divided into communities of size |C∗i |, with n

|C∗i |
communities

in total. Follow the same process as in in BP-A (starting from the same node), except on GB

instead of GA. ZB gives the total number of nodes reached.

Claim 2. ZA is stochastically dominated by ZB.

Proof. The idea is to interpolate between BP-A and BP-B by considering a series of local

moves in which we split one of the communities in GB into two smaller communities.

Consider a series of graphs GB = G1....GW = GA with the following property: Gi+1 is equal

to Gi except that a single community Ci of Gi is split into two communities C1
i and C2

i . With

each Gi, we can associate a branching process BP-i and corresponding Zi. We will show that

for any i, Zi stochastically dominates Zi+1. Since for any GA there exists a sequence of local

moves that can produce it from GB, this will show that ZB stochastically dominates ZA.

To prove that Zi stochastically dominates Zi+1, we couple BP-i and BP-(i + 1) by sharing

the status (live or not) of every edge in the graph between them. If BP-(i + 1) reaches

either C1
i or C2

i , then BP-i reaches Ci = C1
i ∪ C2

i . Hence, every community that is visited by

BP-(i + 1) is also visited by BP-i. This establishes that Zi stochastically dominates Zi+1, as

desired.

BP-B is a nonuniform branching process in which the distribution of the number of

children at each step depends on the total number of communities which remain to be

explored. Note that GB has n
|C∗i |

communities in total. Suppose that BP-B has explored k

communities so far. Define qeff to be the “effective" probability of a live edge between two

communities:

qeff = 1− (1− pbq)|C
∗
i |2
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By definition, we have qeff
n
|C∗i |
≤ cmax < 1. The number of children spawned by the kth

community is distributed as Bin( n
|C∗i |
− k, qeff). Since this nonuniform process is difficult to

analyze, we note that it is stochastically dominated by a final branching process:

BP-uniform: A Galtson-Watson branching process with offspring distribution Bin( n
|C∗i |

, qeff).

Xi represents the ith largest connected component in G, which we have established is

stochastically dominated by the corresponding component generated by BP-B. For simplicity,

we upper bound the ith largest component by the single largest component. In GB there are

at most n
|C∗i |

components. The maximum of n
|C∗i |

draws from BP-B is stochastically dominated

by the maximum of n
|C∗i |

draws of Zuni f orm.

Claim 3. Draw Z1...ZN iid as Zuni f orm. Then

E [max Zi] ≤ 12

(
1

1− n
|C∗i |

qeff

)
log N

Proof. For any j, let ξ j be iid from Bin( n
|C∗i |

, qeff). Draief and Massoulie [DM10] (Lemma 1.9)

give the following tail bound for Zi:

Pr[Zi ≥ K] ≤ Pr

[
K

∑
j=1

ξ j ≥ K

]

∑K
j=1 ξ j is distributed as Bin(K n

|C∗i |
, qeff), so via Chernoff bound we have

Pr

[
K

∑
j=1

ξ j ≥ K

]
≤ exp

(
−1

3
K
(

1− n
|C∗i |

qeff

))
So, we see that Zi is stochastically dominated by an exponential random variable with

mean λ = 1
3

(
1− n

|C∗i |
qeff

)
. Dasarathy [Das11] (Eq. 7) show that the expected maximum

of N exponential variables is upper bounded by 2 log N
λ(1− 1

N )
. Noting that 1 − 1

N ≥ 1
2 and

λ ≥ 1
3 (1− cmax), the claim follows.

By substituting N = n
|C∗i |

into Claim 3 and multiplying by β(|C∗i |)|C∗i | (the size of the

giant connected component of each community in GA), we conclude the proof of the lemma.
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We remark here that the reason we have a factor 1− cmax and not (1− cmax)2 is that we have

bounded the expectation of the maximum of the N variables, not given a bound that holds

with high probability.

With the key lemma in hand, we are now ready to proceed to the proof of our bound

on OPT. Let OPT(C∗) be a random variable which gives the expected optimal value

conditioned on C∗.

OPT = E
C∗

[
E
[
OPT(C∗)

∣∣∣C∗]]
≤ E

C∗

[
K

∑
i=1

Xi

∣∣∣C∗]

≤ E
C∗

[
K

∑
i=1

12
1− cmax

log
(

n
|C∗i |

)
β(|C∗i |)|C∗i |

]
(Lemma 30)

≤
K

∑
i=1

12
1− cmax

log
(

n
|Ci|

)
β(|Ci|)|Ci| (|Ci| ≥ |C∗i |)

≤
K

∑
i=1

12
1− cmax

log
(

n
β(|Ci|)|Ci|

)
β(|Ci|)|Ci|.

Given the guarantee that ∑K
i=1

12
1−cmax

log
(

n
β(|Ci |)|Ci |

)
β(|Ci|)|Ci| ≥ OPT, we now analyze

how small ∑K
i=1 β(|Ci|)|Ci| can be. Define yi = β(|Ci|)|Ci|. We are interested in the value of

the optimization problem

min
y1...yK

K

∑
i=1

yi

s.t.
K

∑
i=1

12
1− cmax

log
(

n
yi

)
yi ≥ OPT

This can be reformulated as the convex program

min
y1...yK

K

∑
i=1

yi
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s.t. −
K

∑
i=1

12
1− cmax

log
(

n
yi

)
yi ≤ −OPT

We structurally characterize the optimal solution as follows. Let v∗ denote the optimal

value of the above convex program. Note that Slater’s condition holds, and so we have

strong duality. Consider the Lagrange dual function

L(λ) = inf
y1...yK

K

∑
i=1

yi + λ

(
OPT −

K

∑
i=1

12
1− cmax

log
(

n
yi

)
yi

)

where the dual problem is

max
λ≥0
L(λ).

Let λ∗ be the optimal value of the Lagrange multiplier. We write

v∗ = L(λ∗)

= inf
y1...yK

K

∑
i=1

yi + λ∗
(

OPT −
K

∑
i=1

12
1− cmax

log
(

n
yi

)
yi

)
(A.3)

Examining Equation A.3, let y∗i ...y∗K be values of y1...yK which achieve v∗. We must have

that y∗i ...y∗K maximize ∑K
i=1 log

(
n
y∗i

)
ai subject to ∑K

i=1 y∗i = v∗ (otherwise a smaller value

could have been achieved). Since 12
1−cmax

log
(

n
y∗i

)
ai is concave, Jensen’s inequality gives

K

∑
i=1

log
(

n
y∗i

)
y∗i ≤ K log

(
n

1
K ∑K

i=1 y∗i

)(
1
K

K

∑
i=1

y∗i

)
.

That is, ∑K
i=1 log

(
n
y∗i

)
y∗i is maximized when y1 = y2 = ... = yK = 1

K ∑K
i=1 yi. Thus,

the optimal value v∗ can be obtained when we restrict the space of feasible y1...yK to

points where all are equal. Let µ = 1
K ∑K

i=1 β(|Ci|)|Ci| denote the average size of the giant

components of the top K communities. We rephrase the original optimization problem as
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min
µ

µK

s.t. µK
(

12
1− cmax

log
(

n
µ

))
≥ OPT

The constraint in this problem gives a lower bound on the possible size of µK. Thus we

have

K

∑
i=1
|Ci| = µK ≥

(
1− cmax

12 log n
µ

)
OPT

which concludes the proof of the lemma.

347



A.2 Estimating the surrogate objective g

In this section, we explain more detail our procedure for estimating the surrogate objective

(g). Recall that we defined g(X) = ∑L
i=1 f (X, Ci), i.e, the influence spread of X considering

only within-community edges. We would like a way of estimated E[g(X)] using only local

information. Note that the influence spread within each Ci depends only on the nodes in

X ∩ Ci, which we write as XCi for short. So, E[g(X)] can be rewritten as E
[
∑L

i=1 f (XCi , Ci)
]
.

If we knew XCi , then we could calculate E [ f (XCi , Ci)] by simulating draws from the SBM

for the unobserved portions of Ci conditioned on the presence of the subgraphs that the

algorithm visited. Thus, the main challenge is that we do not know what community each

node belongs to.

We start out by rewriting the influence bound in terms of the marginal contribution

made by each vi. Let χ(v) give the community of vertex v. We can write the bound as

g(X) =
T

∑
i=1

E
X∼w

[
f (Xχ(vi) ∩ {v1...vi}, χ(vi)− f (Xχ(vi) ∩ {v1...vi−1}, χ(vi))

]
where X ∼ w denotes a seed set X with each element independently sampled with

probability proportional to w. Taken at face value, this does not seem like an improvement

because we still do not know Xχ(vi) for each term. However, since we have an estimate for

the size of χ(vi), we know (approximately) how many other times χ(vi) will have been

sampled as well (approximately) the weight that each of these samples will have received.

For each node, we can simulate a set sim(vi) which contains vi plus a sample from the

distribution of the other nodes that ARISEN sampled from χ(vi) in its random walks. The

only issue is that we do not know where each node of sim(vi) lies in the order {v1...vT}, i.e.,

whether it takes “precedence" over vi when we compute the marginal contributions. The

final ingredient we need to overcome this obstacle is to realize that there is nothing special

about the ordering {v1...vT}; we can equivalently rearrange the nodes in any order. In fact,

we take the expectation over a uniformly random permutation π of the ordering: we first

draw π and then sum in the order vπ(1)....vπ(T). Via linearity of expectation, we can take a
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different permutation for each term i = 1....T, where the permutation in term i need only a

establish an ordering among the elements of sim(vi). For any set X, let [X]iπ represent the

first i elements of X in the permutation π. Then we can write the influence bound as

g(X) =
T

∑
i=1

E
π,sim(vi),X

[
f ([X ∩ sim(vi)]

i
π, χ(vi))− f ([X ∩ sim(vi)]

i−1
π , χ(vi))

]
.

In this final form, we can calculate each term by averaging over simulations of sim(vi),

an ordering π on sim(vi), and set of seed nodes from sim(vi) that are chosen (given

the simulated weights). As discussed earlier, we can the compute f by averaging over

simulations of the draw of Ci, and simulating the ICM on each simulated community.

Complete pseudocode for EstVal is given in Algorithm 14. The proof that EstVal accurately

estimates g follows immediately from the construction given above.

Algorithm 14 EstVal

1: for i = 1...len(w) do
2: for j = 1...M do
3: Simulate Gj

i from G(pw, Ŝi) conditioned on Hi appearing.
4: for k = 1...P do
5: π = a uniformly random permutation on V(Gj

i )

6: N ∼ Binom (T, Ŝi
n )

7: Draw u1...uN uniformly random from V(Gj
i ) \V(Hi)

8: for ` = 1...N do
9: wsamp

` = weight w assigns to a node with value f (u`, Gj
i )

10: end for
11: X = a random subset of u1...uN when K− 1 nodes are chosen from all samples,

the total weight is ||w||1, and u1...uN have corresponding weights from
wsamp

12: for u ∈ X do
13: if π(si) > π(u), remove u from X
14: end for

15: val+ = 1
MP

(
1−

(
1− wi

||w||1

)K
) [

f ({si} ∪ X, Gj
i )− f (X, Gj

i )
]

16: end for
17: end for
18: end for
19: return val
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A.3 Additional experimental results

A.3.1 Parameter settings

In all runs we set B = 0 (no burn-in). The values for R and T can be found in the table

below.

Network K T R

homeless-a 0.01 · n 5 10
homeless-a 0.015 · n 5 10
homeless-a 0.02 · n 5 10
homeless-b 0.01 · n 7 12
homeless-b 0.015 · n 7 12
homeless-b 0.02 · n 7 12
india-1 0.005 · n 10 15
india-1 0.01 · n 10 15
india-1 0.015 · n 10 15
india-1 0.02 · n 10 15
india-2 0.005 · n 7 12
india-2 0.01 · n 10 12
india-2 0.015 · n 10 12
india-2 0.02 · n 10 12
india-2 0.005 · n 6 25
india-2 0.01 · n 12 25
india-2 0.015 · n 18 25
india-2 0.02 · n 25 25
netscience 0.005 · n 40 25
netscience 0.01 · n 40 25
netscience 0.015 · n 40 25
netscience 0.02 · n 40 25
SBM 0.005 · n 6 25
SBM 0.01 · n 12 25
SBM 0.015 · n 18 25
SBM 0.02 · n 25 25
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A.3.2 Influence spread

K = 0.005 · n
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K = 0.015 · n
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Appendix B

Appendix to Chapter 2

B.1 Missing proofs

We start out by proving some lemmas from the main text.

Proof of Lemma 2. Let u � 0. We would like to show that for any x and any ξ ≥ 0, G(x + ξu)

is concave as a function of ξ. Fix any ξ1, ξ2 ≥ 0 and any λ ∈ [0, 1]. We have

min
i

Fi(x + (λξ1 + (1− λ)ξ2)u) ≥ min
i

[λFi(x + ξ1u) + (1− λ)Fi(x + ξ2u)]

≥ λ min
i

Fi(x + ξ1u) + (1− λ)min
i

Fi(x + ξ2u)

where the first inequality follows because each Fi is individually up-concave.

Proof of Lemma 46. G is differentiable at a point x precisely when there is a unique Fi such

that Fi(x) = minj Fj(x). Here, we have ∇G(x) = ∇Fi(x). Note that ∂Fi
∂xj

∣∣∣
x
= E[ fi(R(x)|j ∈

R(x))]−E[ fi(R(x)|j 6∈ R(x))] = E[ fi(j|R(x− xj))]. By submodularity, we conclude that

∂Fi
∂xj

∣∣∣
x
≤ fi({j}) ≤ M. Further, ∂Fi

∂xj

∣∣∣
x
≥ 0 always holds by monotonicity. Thus, ||∇G(x)||∞ ≤

M.

Let µ be the uniform probability distribution over the `∞ ball of radius u. Define the

smoothed function Gµ(x) = Ez∼µ[G(x + z)]. We will show the following properties of Gµ:
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Proof of Lemma 4. For the first property, we start out by fixing the draw of z from µ. Follow-

ing the logic of Lemma 2, we have that

min
i

Fi(x + z + (λξ1 + (1− λ)ξ2)u) ≥ min
i

λFi(x + zξ1u) + (1− λ)Fi(x + z + ξ2u)

≥ λ min
i

Fi(x + z + ξ1u) + (1− λ)min
i

Fi(x + z + ξ2u).

Since these inequalities hold for any fixed z, they also hold in expectation over a random

z, so we conclude that Gµ is up-concave.

For the second property: since ||∇G||∞ ≤ M, G is M-Lipschitz with respect to the `1

norm. Thus, we have

E[G(x + z)] ≤ G(x) + M E[||z||1] ≤ G(x) +
Mnu

2

and analogously, E[G(x + z)] ≥ G(x)− Mnu
2 .

The third property follows from the fact that G is differentiable almost everywhere. To

see this, note that G is differentiable wherever there is a unique minimizing Fi, in which

case ∇G = ∇Fi. Suppose that there is not a unique minimizer at some point x. There are

two cases. First, if there is an open ball around x such that the minimizing functions at x

coincide at every point in the ball, then their gradients also coincide in the ball. Thus, G is

still differentiable at x. Second, if no such open ball exists, then the set of points at which G

is not differentiable has measure zero. Hence, taking a random perturbation of the input

avoids such points with probability 1.

For the proof of the fourth property, we follow the argument of Duchi et al. (2012). We

first claim that

||∇Gµ(x)−∇Gµ(y)||∞ = ||E [∇G(x + z)]−E [∇G(y + z)] ||∞ ≤ M
∫
|µ(z− x)− µ(z− y)|dz.

(B.1)

We prove this claim as follows. Without loss of generality, we take x = 0 for this step of
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the proof (via a linear change of variables). Let g(x) be a function that is defined as ∇G(x)

where G is differentiable. At the (measure 0) set of points where G is not differentiable,

we define g to be equal to ∇Fi(x) for an arbitrary i ∈ arg minj Fj(x). With probability 1,

E[g(x + z)] = E[∇G(x + z)] We have

E[g(z)− g(y + z)] =
∫

g(z)µ(z)dz−
∫

g(y + z)µ(z)dz

=
∫

g(z)µ(z)dz−
∫

g(z)µ(z− y)dz

=
∫

I>
g(z) [µ(z)− µ(z− y)] +

∫
I<

g(z) [µ(z− y)− µ(z)]

where I> = {z|µ(z) > µ(z− y)} and I< = {z|µ(z) < µ(z− y)}. Taking norms, we

have

||E[g(z)− g(y + z)]||∞ ≤ sup
z∈I>∪I<

||g(z)||∞
∣∣∣∣∫I>

[µ(z)− µ(z− y)] +
∫

I<
[µ(z− y)− µ(z)]

∣∣∣∣
≤ M

∣∣∣∣∫I>
[µ(z)− µ(z− y)] +

∫
I<
[µ(z− y)− µ(z)]

∣∣∣∣
= M

∫
|µ(z)− µ(z− y)|dz

Having proved that Equation B.1 holds, we now just need to show
∫
|µ(z− x)− µ(z−

y)|dz ≤ ||x−y||1
u . This follows from Duchi et al. (2012), Lemma 12.

We now prove a technical smoothness lemma. The argument is standard, but we include

it for completeness.

Lemma 31. For any x, y, Gµ(x + γy)− Gµ(x) ≥ γ∇Gµ(x)Ty− Mk2γ2

2u .

Proof. For any x, y ∈ P , we consider the one dimensional auxiliary function gx,y(ξ) =

Gµ(x + ξy). We have
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Gµ(x + γy)− Gµ(x) =
∫ 1

ξ=0

dgx,γy(ξ)

dξ
dξ

=
∫ 1

ξ=0
∇Gµ(x + ξγy)>(γy)dξ

= γ
∫ 1

ξ=0
∇Gµ(x)>y +

[
∇Gµ(x + ξγy)> −∇Gµ(x)>

]
ydξ

≥ γ
∫ 1

ξ=0
∇Gµ(x)>y− ||∇Gµ(x + ξγy)> −∇Gµ(x)>||∞||y||1dξ (by Hölder’s inequality)

≥ γ
∫ 1

ξ=0
∇Gµ(x)>y− M

µ
||ξγy||1||y||1dξ (∇Gµ is

M
µ
)-Lipschitz

≥ γ∇Gµ(x)> − γ2
∫ 1

ξ=0

Mk2

u
ξdξ (bound on `1 diameter of P)

= γ∇Gµ(x)> − γ2Mk2

2u

which proves the lemma.

We also use the following lemma, the proof of which can be found in Bian et al. (2017):

Lemma 32. For any DR-submodular function G and its optimizer x∗, G(x∗ + x) − G(x) ≤
∇G(x)>x∗.

We can now proceed to prove our guarantee on the performance of the SFW algorithm

for optimizing the objective G.

Proof of Theorem 4. We analyze the gain made in a single step of SFW as follows:

Gµ(x`)− Gµ(x`−1) ≥ γ`∇Gµ(x`−1)>v` − Mk2

2u
γ2
` (Lemma 43)

= γ`∇̃>` v` − γ`

(
∇̃` −∇Gµ(x`−1)

)>
v` − Mk2

2u
γ2
`

≥ γ`∇̃>` v` − γ`k||∇̃` −∇Gµ(x`−1)||∞ −
Mk2

2u
γ2
` (Hölder’s inequality and rank(M) = k)

≥ γ`∇̃>` x∗ − γ`k||∇̃` −∇Gµ(x`−1)||∞ −
Mk2

2u
γ2
` (by definition of x∗)

= γ`∇Gµ(x`−1)>x∗ − γ`

(
Gµ(x`−1)− ∇̃`

)>
x∗ − γ`k||∇̃` −∇Gµ(x`−1)||∞ −

Mk2

2u
γ2
`

≥ γ`∇Gµ(x`−1)>x∗ − 2γ`k||∇̃` −∇Gµ(x`−1)||∞ −
Mk2

2u
γ2
`
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≥ γ`

(
Gµ(x∗ + x`−1)− Gµ(x`−1)

)
− 2γ`k||∇̃` −∇Gµ(x`−1)||∞ −

Mk2

2u
γ2
`

(Lemma 44 and x∗ � 0)

≥ γ`

(
Gµ(x∗)− Gµ(x`−1)

)
− 2γ`k||∇̃` −∇Gµ(x`−1)||∞ −

Mk2

2u
γ2
` (monotonicity)

Now we give a high probability bound on ||∇̃` −∇Gµ(x`−1)||∞. Denote by ∇̃i
` the ith

randomly sampled gradient and
[
∇̃i

`

]
j its jth entry (the derivative with respect to item j).

We will give a high probability bound on each individual entry of the estimated gradient

and them combine them using union bound to control ||∇̃` −∇Gµ(x`−1)||∞.

Fix any individual entry j. We have
[
∇̃`

]
j = 1

c ∑c
i=1
[
∇̃i

`

]
j. Because the first-order

oracle returns an unbiased estimate, we know that E
[[
∇̃`

]
j −∇jGµ(x`−1)

]
= 0. Further,∣∣∣[∇̃`

]
j

∣∣∣ ≤ M and
∣∣∇jGµ(x`−1)

∣∣ ≤ M, so
∣∣∣[∇̃`

]
j −∇jGµ(x`−1)

∣∣∣ ≤ 2M holds via triangle

inequality. Now via Hoeffding’s inequality, we have that

Pr

[∣∣∣∣∣ c

∑
i=1

[
∇̃i

`

]
j
− c∇jGµ(x`−1)

∣∣∣∣∣ ≥ m
ε

8k

]
≤ 2e−

ε2c
128k2 M2

and so taking c = 128M2k2

ε2 log 4Kn
δ ensures that

Pr
[∣∣∣[∇̃`

]
j −∇jGµ(x`−1)

∣∣∣ ≥ ε

8k

]
≤ δ

2Kn
.

By union bound, the total probability of this event holding for all n items at each of

the K timesteps is at least 1− δ
2 . In all of what follows, we condition on this happening.

Rearranging gives

Gµ(x∗)− Gµ(x`) ≤ (1− γ`)
[

Gµ(x∗)− Gµ(x`−1)
]
− 2γ`k||∇̃` −∇Gµ(x`−1)||∞ −

Mk2

2u
γ2
`

≤ (1− γ`)
[

Gµ(x∗)− Gµ(x`−1)
]
− γ`ε

4
− Mk2

2u
γ2
`
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and so after K iterations we obtain

Gµ(x∗)− Gµ(xK) ≤
K−1

∏
`=0

(1− γ`)
[
Gµ(x∗)− Gµ(x0)

]
−

K−1

∑
`=0

γ`ε

4
−

K−1

∑
`=0

Mk2

2u
γ2
`

≤ e−∑K−1
`=0 γ`Gµ(x∗)−

K−1

∑
`=0

γ`ε

4
−

K−1

∑
`=0

Mk2

2u
γ2
`

with constant stepsize γ = 1
K , we have ∑K−1

`=0 γ` = 1 and ∑K−1
`=0 γ2

` =
1
K , this yields

Gµ(x∗)− Gµ(xK) ≤ 1
e

Gµ(x∗)− ε

4
− Mk2

2uK

and hence

G(x∗)− G(xK) ≤ 1
e

Gµ(x∗)− ε

4
− Mk2

2uK
−Mnu.

and so taking u = ε
4Mn and K = 8M2k2n

ε2 ensures that G(x∗)− G(xK) ≤ 1
e Gµ(x∗)− 3ε

4

Now we just need a small trick to deal with the issue that G is only defined for x ∈ [0, 1]n,

and random perturbation by z may take us out of this range. To avoid negative values, we

start the algorithm at the point u1. Since each coordinate only increases during the course of

the algorithm, we are guaranteed to query G only at nonnegative points. To deal with values

greater than 1, we can instead analyze the function H(x) = G(x ∧ 1), where ∧ denotes

coordinate-wise maximum. H is also up-concave, and agrees with G at every point in P(M).

After running SFW applied to H for K iterations, we obtain via Theorem 4 a solution xK

such that H(xK) ≥ (1− 1
e )maxx∈P(M) H(x)− ε = (1− 1

e )maxx∈P(M) G(x)− ε. The issue

is that we may have xK 6∈ P(M). We output the point xK − u1, which is guaranteed to lie

in P(M). To analyze the loss incurred, we use the following lemma

Lemma 33. Let f be a monotone submodular function with maxi f ({i}) ≤ M. Let R(x) be a

random set in which every element appears independently with probability xi ≥ u. Then E[ f (R(x−
u1))] ≥ E[ f (R(x))]− uMn.
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Proof. We decompose the expected value of R(x− u1) into the expected marginal contribu-

tion from each item:

E[ f (R(x− u1))] =
n

∑
i=1

Pr[i ∈ f (R(x− u1))]E[ f (i|(R(x− u1))] (linearity of expectation)

≥
n

∑
i=1

Pr[i ∈ f (R(x− u1))]E[ f (i|(R(x))] (submodularity)

=
n

∑
i=1

(xi − u)E[ f (i|(R(x))]

=
n

∑
i=1

xi E[ f (i|(R(x))]− u
n

∑
i=1

E[ f (i|(R(x))]

≥
n

∑
i=1

xi E[ f (i|(R(x))]− u
n

∑
i=1

E[ f ({i})] (submodularity)

≥
n

∑
i=1

xi E[ f (i|(R(x))]− unM ( f ({i}) ≤ M)

= E[ f (R(x))]− uMn.

Applying Lemma 33 to every fi ∈ F , we conclude that

H(xK − u1) ≥ H(xK)− uMn = G(xK)− ε

4
≥
(

1− 1
e

)
G(x∗)− ε

which completes the proof.

Lastly, we prove our concentration guarantee for the output of the swap rounding

algorithm.

Proof of Theorem 6. For now, fix a specific function fi. We will show that with high probability,

the expected value of fi on the empirical distribution is close to its expected value on the

full distribution induced by randomized swap rounding. At the end we will take a union

bound over all fi ∈ F . Let R` be the random set drawn in the `th iteration of randomized

swap rounding. Let µ0 = Fi(xK). Note that for all `, E[ fi(R`)] ≥ µ0 via the guarantee for

randomized swap rounding. Let Y = ∑r
`=1 fi(R`) and note that E[Y] ≥ rµ0.

Our high-level approach is to apply Markov’s inequality to the random variable erµ0−Y.
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Let λ be an arbitrary parameter in [0, 1] (later, we will set λ to get the best bound). For

any single iteration of randomized swap rounding, Chekuri et al. bound the exponential

moment of the random variable λ(µ0 − fi(R`)) as

E[eλ(µ0− f (R`))] ≤ e2λ2µ0 .

Since rµ0 −Y = ∑r
`=1 µ0 − f (R`), we have

E
[
eλ(rµ0−Y)

]
= E

[
e∑r

`=1 λ(µ0− f (R`))
]

= E

[
r

∏
`=1

eλ(µ0− f (R`))

]

=
r

∏
`=1

E
[
eλ(µ0− f (R`))

]
(independence)

≤ e2rλ2µ0 .

Applying Markov’s inequality yields

Pr[rµ0 −Y ≥ εrµ0] = Pr
[
eλ(rµ0−Y) ≥ eεrλµ0

]
≤

E
[
eλ(rµ0−Y)

]
eεrλµ0

≤ e2rλ2µ0−εrλµ0

Taking λ = ε
4 , we obtain

Pr

[
1
r

r

∑
`=1

fi(R`) ≤ (1− ε)µ0

]
= Pr[rµ0 −Y ≥ εrµ0] ≤ e

−rµ0ε2

8 .

We now distinguish two cases. First, µ0 < ε. Since fi(R`) ≥ 0 ∀i, `, 1
r ∑r

`=1 fi(R`) ≥ µ0 −
ε holds with probability 1. Second, µ0 ≥ ε. Here, we see that setting r = Θ

( 1
ε3

(
log |F |+ log 1

δ

))
ensures that 1

r ∑r
`=1 fi(R`) ≥ (1− ε)µ0 holds with probability at least 1− δ

|F | . Taking union
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bound over all fi ∈ F completes the proof.
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Appendix C

Appendix to Chapter 6

C.1 Proofs for continuous submodular setting

Lemma 34. Take s = 2nM2

ε2 log 1
δ log L1

ε samples and let ĈVaRα be the empirical CVaR on the

samples. Then, |CVaRα(x)− ĈVaRα(x)| ≤ ε holds for all x ∈ P with probability at least 1− δ.

Proof. We can establish the result for fixed x using the proof of Ohsaka and Yoshida. We

have via taking c = L in their Lemma 4.4 that for any fixed x, |CVaRα(x)− ̂CVaRα(x)| ≤ ε

with probability at least 1− δ by taking s = Θ
(

M2

ε2 log 1
δ

)
samples. Note that we cannot

directly take union bound because the set of x ∈ P is not finite. Instead, we take a uniform

grid of
(

L1d
ε

)n
points containing P . Via union bound, concentration holds for all points

in the grid using s = Θ
(

M2

ε2 log
((

L1d
ε

)n
1
δ

))
= Θ

(
M2n

ε2 log L1d
εδ

)
. Now we argue that every

point in P is close in CVaR value to a point in the grid. The grid has enough points to

guarantee that for any x1 ∈ P , there is a point x2 � x1 within `2 distance ε
L2

of x1. Note

that CVaRα(x2) ≥ CVaRα(x1) by monotonicity of F combined with monotonicity of CVaR.

Additionally by monotonicity of CVaR, CVaRα(x2)− CVaRα(x1) is maximized when for

all y, F(x2, y) = F(x1, y) + L||x1 − x2||2. In this case, {y|F(x1) ≤ VaRα(x1)} = {y|F(x2) ≤
VaRα(x2)}. Let Z denote this set of scenarios. We have CVaRα(x1) = E [F(x1, y)|y ∈ Z ]
and CVaRα(x2) = E [F(x2, y)|y ∈ Z ]. But since we take the expectation over a fixed set

of scenarios and each F(·, y) is L1-Lipschitz, the expectation must be L1-Lipschitz as well.
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Hence, CVaRα(x2)−CVaRα(x1) ≤ L1||x1 − x2||2 ≤ ε.

Lemma 35. Define g(τ) = ∑y∈Y Iy(τ). (a) τ maximizes 1
u

∫ u
z=0 H(x, τ)dz if g(τ) = αs. (b) g is

piecewise linear and monotone decreasing.

Proof. We start with the claim in (a). We have

1
u

∫ u

z=0
H(x, τ)dz =

1
u

∫ u

z=0
τ − 1

αs ∑
F(x,y)≤τ+z

τ − F(x, y)dz.

Note that the function inside the integral is known to be concave in τ (Rockafellar and

Urseyev 2000), which yields concavity of the entire function. Thus, to find a maximum it

suffices to find a point where the derivative with respect to τ is 0. To this end, note that

the set of z such that F(x, y) = τ + z for some z has measure 0 and hence do not impact the

value of the integral. For the remaining values of z, we have

d
dτ

= 1− |{y : F(x, y) ≤ τ + z}|
αs

since the set in the numerator is constant over some interval around τ. This yields

d
dt

1
u

∫ u

z=0
H(x, τ)dz =

1
u

∫ u

z=0
1− |{y : F(x, y) ≤ τ + z}|

αs
dz

=
1
u

[
1− 1

αs ∑
y∈Y

∫ 1

z=0
1 [F(x, y) ≤ τ] dz

]

=
1
u

[
1− 1

αs ∑
y∈Y

Iy(τ)

]
.

By inspection, the derivative is 0 when ∑y∈Y Iy(τ) = αs, which proves part (a) of the

lemma.

For part (b), we simply note that each Iy(τ) is monotone decreasing and piecewise linear

in τ, and g is the sum of such functions.

Lemma 36. For any x and τ,
∣∣H̃(x, τ)− H(x, τ)

∣∣ ≤ u(1+ 1
α )

2
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Proof. We start out by showing that H is
(
1 + 1

α

)
−Lipschitz in τ. Consider any x, τ, and τ′

and without loss of generality let τ′ > τ.

H(x, τ)− H(x, τ′) =
[
τ − τ′

]
− 1

α|Y|∑y
max(τ − F(x, y), 0)−max(τ′ − F(x, y), 0).

We consider three cases for the term inside the summation. First, F(x, y) < τ. Here,

max(τ − F(x, y), 0)−max(τ′ − F(x, y), 0) = τ − τ′. Second, τ ≤ F(x, y) < τ′. Here,

max(τ − F(x, y), 0)−max(τ′ − F(x, y), 0) = F(x, y)− τ′

and hence

∣∣max(τ − F(x, y), 0)−max(τ′ − F(x, y), 0)
∣∣ ≤ |τ − τ′|.

Third, F(x, y) ≥ τ′. Here, the term in the summation is zero.

Via the triangle inequality, we conclude that

∣∣H(x, τ)− H(x, τ′)
∣∣ ≤ ∣∣τ − τ′

∣∣+ 1
α|Y|∑y

|τ − τ′|

≤
(

1 +
1
α

)
|τ − τ′|.

Now, since z ∈ [0, u] holds with probability 1, we can apply the above reasoning to

conclude that

∣∣H̃(x, τ)− H(x, τ)
∣∣ = 1

u

∣∣∣∣∫ u

z=0
H(x, τ + z)− H(x, τ)dz

∣∣∣∣
≤ 1

u

∫ u

z=0
|H(x, τ + z)− H(x, τ)| dz

≤ 1
u

∫ u

z=0

(
1 +

1
α

)
zdz

=
u
(
1 + 1

α

)
2
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Lemma 37. At each iteration k = 1...K,

H̃(x̃∗, τ(x̃∗))− H̃(xk, τ(xk)) ≤ max
v∈P
〈∇xH̃(xk, τ(xk)), v〉.

Proof. We will show that maxτ H̃(·, τ) is an up-concave function. Fix any two points

x1, x2 ∈ P . We start out by defining the function h : [0, 1]→ R as h(ξ) = H(x1 + ξx2). We

will show that h(ξ, τ) is jointly concave in (ξ, τ). To show joint concavity in (ξ, τ), we write

h(ξ, τ) =τ − 1
α|Y| ∑

y∈Y
[τ − F(x1 + ξx2, y)]+

The first term is linear in (ξ, τ), and so is concave. We will show that the expectation

is jointly convex in (ξ, τ), from which concavity of h follows. To show this, is suffices to

show that the term inside the expectation is convex for any fixed y. Note that this term

is the composition of the function (ξ, τ) 7→ τ − F(x1 + ξx2, y) with the function t 7→ [t]+.

Since the latter is a nondecreasing convex function, the composition is convex whenever the

inner function is convex. For the inner function, τ is convex because it is linear in ξ, and

−F(x1 + ξx2, y) is convex because F(·, y) is up-concave. Thus, the claim follows.

Now define h̃(ξ, τ) = H̃(x1 + ξx2). h̃ is jointly concave in (ξ, τ) because it is a non-

negative linear combination of concave functions. This shows that maxτ h̃(ξ, τ) is concave

in ξ because maximizing a jointly concave function with respect to one of its parameters

yields a concave function in the remaining parameters. We conclude that maxτ H̃(·, τ) is an

up-concave function.

Fix the points xk and x̃∗ as x1 and x2 in the above definition of h̃. Now the conclusion

follows by arguing (as in Bian et al. (2017)),

H̃(x̃∗, τ(x̃∗))− H̃(xk, τ(xk)) ≤ H̃(x̃∗ + xk, τ(x̃∗ + xk))− H̃(xk, τ(xk))

= max
τ

h̃(1, τ)−max
τ

h̃(0, τ)
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≤ d maxτ h̃(0, τ)

dξ
· 1 (since max

τ
h̃(·, τ)) is concave

= 〈∇xH̃(xk, τ(xk)), x̃∗〉

≤ max
v∈P
〈∇xH̃(xk, τ(xk)), v〉

In the lemmas that follow, we use an alternate interpretation of H̃. Namely, we can

view the smoothing process as drawing a random variable z from a uniform distribution

over the interval [0, u]. Then, H̃(x, τ) = Ez [H(x, τ + z)]. This is completely equivalent to

the definition given in the text, but simplifies notation and concepts at a few places in the

proofs below.

Lemma 38. If x2 � x1, ∇xH̃(x2, τ(x2)) � ∇xH̃(x2, τ(x1)).

Proof. Recall that ∇xH̃(x2, τ) = Ez [∇xH(x2, τ + z)]. We couple the random variables

∇xH(x2, τ(x1) + z) and ∇xH(x2, τ(x2) + z) by fixing z to any value where both derivatives

exist (which excludes only a measure 0 set).

Note that since F is monotone in x, ∇xF(x, y) � 0 holds for all x ∈ P and y ∈ Y .

Moreover, we can write

∇xH(x, τ) =
1

α|Y| ∑
y∈Y :F(x,y)≤τ

∇xF(x, y).

It is easy to see that the function τ(x) is monotone nondecreasing and hence τ(x2) + z ≥
τ(x1) + z. Thus, for all y ∈ Y , F(x2) ≤ τ(x2) + z only if F(x2) ≤ τ(x1) + z. Since each term

in the above summation is nonnegative, ∇xH(x2, τ(x1) + z) � ∇xH(x2, τ(x2) + z). The

lemma now follows by taking the expectation with respect to z.

Lemma 39. If ∀y ∈ Y , F(·, y) is L1-Lipschitz and ∇xF(·, y) is L2 Lipschitz with ||∇xF||2 ≤ G,

then ∇xH̃ is 1
α

(
L2 +

L1G
u

)
−Lipschitz.
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Proof. For any z, let Y1(z) = {y : F(x1, y) ≤ F(x2, y) ≤ τ + z}. Let Y2(z) = {y : F(x1, y) ≤
τ + z < F(x2, y)}. We have

||∇xH̃(x1, τ)−∇xH̃(x2, τ)|| =
∣∣∣∣∣∣E

z
[∇xH(x1, τ + z)]−E

z
[∇xH(x2, τ + z)]

∣∣∣∣∣∣
=

1
α

∣∣∣∣∣∣
∣∣∣∣∣∣Ez
 1
|Y| ∑

y∈Y1(z)
∇xF(x1, y)−∇xF(x2, y)− 1

|Y| ∑
y∈Y2(z)

∇xF(x1, y)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 1
α

E
z

 1
|Y| ∑

y∈Y1(z)
||∇xF(x1, y)−∇xF(x2, y)||+ 1

|Y| ∑
y∈Y2(z)

||∇xF(x1, y)||


≤ 1

α
E
z

 1
|Y| ∑

y∈Y1(z)
L2 ||x1 − x2||+

1
|Y| ∑

y∈Y2(z)
||∇xF(x1, y)||


≤ 1

α
E
z

[ |Y1(z)|
|Y|

]
L2||x2 − x1||+

1
α

E
z

 1
|Y| ∑

y∈Y2(z)
||∇xF(x1, y)||


≤ 1

α
E
z

[ |Y1(z)|
|Y|

]
L2||x2 − x1||+

1
α

E
z

 1
|Y| ∑

y∈Y2(z)
G


=

1
α

E
z

[ |Y1(z)|
|Y|

]
L2||x2 − x1||+

1
α

E
z

[
G
|Y| ∑

y∈Y
1 [y ∈ Y2(z)]

]

=
1
α

E
z

[ |Y1(z)|
|Y|

]
L2||x2 − x1||+

G
α|Y| ∑

y∈Y
Prz [y ∈ Y2(z)]

Now, all that remains is to bound the term Prz [y ∈ Y2(z)]. Note that for all y ∈ Y ,

F(x2, y) ≤ F(x1, y) + L1||x1 − x2||. Since z follows a uniform distribution over an interval of

size u, the probability that it falls into an interval of size L1||x1 − x2|| is at most L1||x1−x2||
u

and we conclude that

||∇xH̃(x1, τ)−∇xH̃(x2, τ)|| ≤ 1
α

(
L2 +

L1G
u

)
||x2 − x1||.
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C.2 Proofs for discrete portfolio optimization

We recall the problem setting for discrete submodular functions, which we refer to as the

discrete portfolio optimization problem. We are given a collection of submodular set functions

f (·, y) on a ground set X, where y is a random variable. There is a collection of feasible sets

I . For instance, I could be all size-k subsets. In general, we will focus on the setting where

I forms a matroid. Analogously to the continuous setting, we assume that f is bounded:

maxy,S∈I f (S, y) ≤ M for some M > 0. The algorithm selects a distribution q over the sets

in I . Let ∆(I) be the set of all such distributions (the |I|-dimensional simplex). We aim to

solve the problem

max
q∈∆(I)

CVaRα

(
∑
S∈I

qS f (S, y)

)

In this section, we provide a block-box reduction from the above problem to the con-

tinuous submodular CVaR problem studied so far. We start by introducing a few useful

concepts from submodular optimization in order to formulate our proposed algorithm. We

then state the algorithm and prove its approximation guarantee. We will assume throughout

that the number of scenarios y is at most the value s given in Lemma 1 since this suffices to

obtain ε-accurate solutions to the true CVaR problem.

Multilinear extension: For a given a submodular function f , its multilinear relaxation

F is a function defined over the continuous space [0, 1]|X|. For any x ∈ [0, 1]|X|, let px denote

the product distribution with marginals given by x. We have F(x) = ES∼px [ f (S)]. Note that

F agrees with f at each vertex of the hypercube, the points {0, 1}|X| (where we interpret

each binary vector as the indicator vector of a set). The value of F, as well as its gradients,

can be efficiently computed via random sampling [CCPV11], with closed forms known for

common special cases [IJB14]. Here, we ignore such issues and assume that F and ∇F are

available exactly (since evaluation up to arbitrary precision ε can be done via sampling). For

any submodular function f , F is a continuous submodular function. Moreoever, F is smooth

(in the sense of having Lipschitz gradients of bounded norm in terms of M; see [Wil18a]).

Swap rounding: Let P be the convex hull of the indicator vectors of sets in I . Each
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point in x ∈ P specifies a product distribution, and via the multilinear extension we can

optimize over such distributions. However, we need to convert this product distribution

back to a distribution over sets I . Note that just sampling from px is not guaranteed to

give us sets that are feasible (lie in I). For instance, if I is the k-uniform matroid, sampling

from a a product distribution x ∈ P can easily produce sets with more than k elements even

though ∑n
i=1 xi ≤ k. Whenever I is a matroid, the swap rounding algorithm of Chekuri et

al. gives a means for efficiently rounding a point x ∈ P to a single feasible set x ∈ P in a

randomized fashion. The set S satisfies E[ f (S)] ≥ F(x) for any submodular function f , and

also satisfies a lower tail bound which controls the probability that f (S) is significantly less

than F(x). Wilder [Wil18a] leverage this result to show the following:

Lemma 40. Suppose we draw O
(

log N
δ

ε3

)
independent samples S1...S` via swap rounding. Then

1
` ∑`

i=1 f (Si) ≥ F(x)− ε holds for any N submodular functions and their multilinear extensions

with probability at least 1− δ.

Combining these two ingredients yields the following algorithm for discrete portfolio

optimization:

Algorithm 15 PortfolioCVaR

1: Input: an algorithm A for continuous submodular CVaR maximization.

2: Set r = O
(

M2 log s
ε2

)
3: Use A to solve the problem

max
x1...xr∈×r

i=1P
CVaRα

(
1
r

r

∑
i=1

E
S∼pxi

[ f (S, y)]

)

obtaining a solution x1...xr.

4: Set ` = O
(

log sr
δ

ε3

)
5: for i = 1...r do

6: Draw sets Si
1...Si

` independently as SwapRound(xi).

7: end for

8: Return the uniform distribution on {Si
j : i = 1...r, j = 1...`}.
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This algorithm solves a continuous optimization problem using the multilinear exten-

sions F(·, y). We maintain r copies of the decision variables x1...xr, a choice which is justified

later (we remark that similar ideas have been used by [DX17, Wil18a] in other domains).

We then draw a series of samples via swap rounding for each xi and output the uniform

distribution over the combined set of samples.

Theorem 26. Suppose that we have access to an algorithm A for the continuous submodular CVaR

maximization problem, which returns a solution with value at least αOPT − ε for some α > 0

and any ε > 0 in time poly(M, 1
ε , n). Then, for any discrete portfolio optimization problem over a

matroid, PortfolioCVaR returns a solution with value at least αOPT − ε with probability at least

1− δ in time poly(M, 1
ε , n, log 1

δ ).

Remark 1. We intentionally present the runtime at a high level (polynomial time) because our

reduction is not aimed at getting the optimal approximation ratio, not the tightest possible runtime

bound. The major bottleneck is that we call A with Õ
(

M2

ε2

)
copies of the decision variables. Below,

we also show how a simple modification of the algorithm (operating on only n decision variables)

obtains approximation ratio α(1− 1
e ).

Remark 2. The RASCAL algorithm that we introduce for the continuous setting provides an

algorithm A which may be used in this reduction with α =
(
1− 1

e

)
. Hence, we immediately obtain

a
(
1− 1

e

)
-approximate algorithm for the discrete portfolio optimization problem.

Proof. Define OPT = maxp∈∆(I) CVaRα

(
ES∼p [ f (S, y)]

)
and p be the maximizing distribu-

tion. We first claim

Lemma 41. There is a distribution q with support on at most r sets which satisfies

CVaRα

(
E

S∼q
[ f (S, y)]

)
≥ OPT − ε

Proof. A stronger result is established in Wilder et al. [Wil18a]. Their Lemma 4 shows that

there is a uniform distribution q on r sets which satisfies ES∼q[ f (S, y)] ≥ ES∼p[ f (S, y)]− ε
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for all y. It is easy to check that since q has value ε-close to p for each y individually, it is

also ε-close in aggregate CVaR value.

In what follows, we will let q be such a distribution. Since optimizing over such

bounded-support mixture distributions is computationally difficult, we now expand our

search to a convex set which contains the promised good distribution q. Specifically, we

optimize over the set of all distributions which are mixtures of r product distributions.

We will maintain r decision variables x1...xr ∈ ×r
i=1P . We will consider the problem of

maximizing CVaRα

(
1
r ∑r

i=1 ES∼pxi [ f (S, y)]
)

. This is the CVaR of the mixture distribution

on the r product distributions x1...xr. Note that the distribution q is an instance of such a

distribution where xi is the indicator vector for the set Si (i.e., a product distribution which

deterministically returns Si) . Hence, by the above guarantee for q we have:

max
x1...xr∈×r

i=1P
CVaRα

(
1
r

r

∑
i=1

E
S∼pxi

[ f (S, y)]

)
≥ CVaRα

(
E

S∼q
[ f (S, y)]

)
≥ OPT − ε.

Thus, we can solve the first maximization problem to obtain a solution with value ε-close

to the optimum. Here we use the multilinear extension. Note that in the optimization

problem above, ES∼pxi [ f (S, y)] is exactly F(xi, y), and 1
r ∑r

i=1 F(xi, y) is DR-submodular since

it is a convex combination of DR-submodular functions. Hence, we can obtain a solution

to the optimization problem with value at least αOPT − ε by applying A, the promised

algorithm for continuous submodular CVaR optimization (line 3 of PortfolioCVaR). The

only remaining issue is to convert the resulting mixture of product distributions into a

distribution over elements of I with equivalent solution quality. Here, we use the swap

rounding procedure. Via Lemma 40, it suffices to draw O
(

log sr
δ

ε3

)
samples for each of the xi.

Let the uniform distribution on the combined set of samples be q′. Via union bound over

the r different product distributions, we have that ES∼q′ [ f (S, y)] ≥ 1
r ∑r

i=1 F(xi)− ε holds

for each y ∈ Y with probability at least 1− δ. Conditioning on this event, we have that
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CVaRα

(
E

S∼q′
[ f (S, y)]

)
≥ CVaRα

(
1
r

r

∑
i=1

F(xi, y)

)
− ε

≥ αOPT − 2ε

and now it suffices to apply the above argument with ε′ = ε
2 to obtain the theorem.

We close by noting that it is possible to obtain a more computationally efficient algorithm

by maintaining only a single copy of the decision variables (r = 1), at the cost of a factor

(1− 1
e ) in the approximation ratio:

Theorem 27. Setting r = 1, PortfolioCVaR returns a solution with value at least

α

(
1− 1

e

)
OPT − ε

for any discrete portfolio optimization problem.

Proof. The reason that we needed to introduce many copies is to guarantee that our feasible

set includes a distribution which is ε-close in CVaR value to the optimal distribution p.

However, we can use a known result for submodular functions to guarantee that the feasible

set includes a (1− 1
e )-approximate solution even if we take r = 1. Specifically, we use the

correlation gap result of Agrawal et al. [ADSY10]. Let D(x) be the set of all distributions with

marginals x. For any submodular function f , Agrawal et al. [ADSY10] prove that

max
x∈P ,q∈D(x)

ES∼q[ f (S)]
ES∼px [ f (S)]

≤ e
e− 1

Hence, we can guarantee that

max
x∈P

CVaRα

(
E

S∼px
[ f (S, y)]

)
≥
(

1− 1
e

)
OPT

and from here, the same argument as before shows that applying PortfolioCVaR with

r = 1 results in a distribution with value at least α
(
1− 1

e

)
OPT − ε.
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Appendix D

Appendix to Chapter 5

D.1 Proofs

D.1.1 DR-submodularity

In order to use the Frank-Wolfe algorithm, we must verify that the objective function

is diminishing returns (DR) submodular. While every submodular set function is also

diminishing returns, this is an additional property which must be separately verified for

continuous function. Since we have already showed that G is submodular, showing that it is

DR-submodular amounts to verifying that ∂2G
∂ν2

i
≤ 0 always holds (Bian et al. 2017). We again

focus on a single term in the posynomial expression, ∏n
i=1(1− νi)

pij . If pij ≤ 1, we are done.

Assume that pij > 1. Taking derivatives yields

∂2

∂ν2
i

[
n

∏
i=1

(1− νi)
pij

]
= pij(pij − 1)(1− νi)

pij−2 ∏
k 6=i

(1− νk)
pkj .

Each term in this expression is nonnegative. We conclude that ∂2F
∂ν2

i
≥ 0 and hence ∂2G

∂ν2
i
≤ 0.

D.1.2 Deterministic case

We now prove the approximation guarantee for the Frank-Wolfe algorithm applied to

Problem 1 (the deterministic problem).
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Proof of Theorem 1. The major step is to show that ∇G is Lipschitz. Since the `∞ and `i

norms are dual, it suffices to bound ||∇2H||∞ to show that ∇G is Lipschitz with respect to

the `1 norm. A naive bound would depend on the sizes of the coefficients in the objective,

e.g., the population size and so on. We can get around this by considering (purely for the

sake of analysis) the rescaled function G(ν)
|G(ν∗)| . Since 1

|G(ν∗)| is a nonnegative constant with

respect to ν, maximizing the two functions is equivalent. Note that if we have a guarantee of

the form G(ν)
|G(ν∗)| ≥

(
1− 1

e

) G(ν∗)
|G(ν∗)| − ε then this implies that G(ν) ≥

(
1− 1

e − ε
)

G(ν∗). That

is, we get a multiplicative guarantee with respect to the unscaled function. We now consider

a single element of ∇2G(ν) using the posynomial representation of G. We emphasize that

this representation is used purely for analysis; it does not need to be known or computed

by the algorithm.

∣∣∣∣∂2G(ν)

∂ν2
i

∣∣∣∣ = ∑
j

aj pij(pij − 1)(1− νi)
−2 ∏

k
(1− νk)

pkj

≤
(

T
1−Ui

)2

∑
j

aj ∏
k
(1− νk)

pkj

≤
(

T
1−Ui

)2

|G(ν∗)|

From which we conclude that
∣∣∣∣∣∣∇2 G(ν)

|G(ν∗)|

∣∣∣∣∣∣
∞
≤
(

T
1−Umax

)2
, where Umax = maxi Ui. In

order to apply the result of Bian et al. we actually need a bound on the Lipschitz constant

of the single-dimensional auxiliary function gν,y(δ) = G(ν + δy) for any feasible ν, feasible

y, and δ ≥ 0. Note that given any δ1, δ2, we have ||(ν + δ1y)− (ν + δ2y)||1 = |δ1 − δ2| · ||y||1.

From this and the Lipschitz bound on G, we obtain that

|gν,y(δ1)− gν,y(δ2)| ≤ |δ1 − δ2|
(

T
1−Umax

)2

||y||1

≤ |δ1 − δ2|
(

T
1−Umax

)2

K

So we have that for any ν and y, gν,y is K
(

T
1−Umax

)2
-Lipschitz. Corollary 1 of Bian et

al. now implies that by taking K
2ε

(
T

1−Umax

)2
iterations in the Frank-Wolfe algorithm the
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guarantee in the theorem follows.

D.1.3 Stochastic case

We now prove our approximation guarantee for the stochastic setting. We start out by estab-

lishing a useful smoothness property for G, which states that G is close to its linearization

over small step sizes. To do so, we include for completeness the following technical relation

between an `∞ bound on a function’s norm and Lipschitz smoothness in the `1 norm.

Lemma 42. Consider a differentiable function f : Rn → Rn. If ||∇ f (x)||∞ ≤ L ∀x ∈ P ,

|| f (y)− f (x)||1 ≤ L||y− x||1 ∀x, y ∈ P .

Proof. Fix any x, y ∈ P . Define the auxiliary function g(δ) = f (x + δ(y − x)) We have

f (y)− f (x) = g(1)− g(0) and hence

|| f (y)− f (x)||1 = ||g(1)− g(0)||1

=

∣∣∣∣∣∣∣∣∫ 1

0

dg(δ)
dδ

dδ

∣∣∣∣∣∣∣∣
1

≤
∫ 1

0

∣∣∣∣∣∣∣∣dg(δ)
dδ

∣∣∣∣∣∣∣∣
1

dδ

=
∫ 1

0

∣∣∣∣∣∣∇ f (x + δ(y− x))>(y− x)
∣∣∣∣∣∣

1
dδ

≤
∫ 1

0
||∇ f (x + δ(y− x))>||∞||y− x||1 (Hölder’s inequality)

≤ L||y− x||1

Lemma 43. Suppose that G has an L-Lipschitz gradient in the `1 norm. Let d = maxx∈P ||x||∞||x||1.

For any x, y, G(x + γy)− G(x) ≥ γ∇G(x)Ty− Ldγ2

2 .

Proof. For any x, y ∈ P , we consider the one dimensional auxiliary function gx,y(δ) =

G(x + δy). We can show that g has a gradient which is Ld-Lipschitz:
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dg(δ1)

dδ
− dg(δ2)

dδ
= ∇G(x + δ1y)>y−∇G(x + δ2y)>y

= (∇G(x + δ1y)−∇G(x + δ2y))> y

≤ ||∇G(x + δ1y)−∇G(x + δ2y)||1||y||∞ (by Hölder’s inequality)

≤ L||(x + δ1y)− (x + δ2)y||1||y||∞

≤ L|δ1 − δ2| · ||y||1||y||∞

= Ld|δ1 − δ2|.

Now, we use smoothness of g to establish that G is close to its linearization over short

distances:

G(x + γy)− G(x)−∇G(x)Ty = g(γ)− g(0)− dg(0)
dδ
· 1

=
∫ γ

δ=0

[
dg(δ)

dδ
− dg(0)

dδ

]
dδ

≤
∫ γ

δ=0
Ldδ dδ

=
Ldγ2

2
.

which proves the lemma.

We also use the following lemma, the proof of which can be found in Bian et al. (2017):

Lemma 44. For any DR-submodular function G and its optimizer ν∗, G(ν∗ + ν) − G(ν) ≤
∇G(ν)>ν∗.

Using these lemmas, we prove the following general result for any smooth DR-submodular

function:

Theorem 28. Let G be a DR-submodular function which is C-Lipschitz in the `1 norm, with

L-Lipschitz gradient (also in `1 norm) and G(0) = 0. Let d = maxx∈P ||x||∞||x||1 and b =

maxx∈P ||x||1. Then, running DOMO for R = Ld
ε iterations with m =

(
4bC

ε

)2
samples per

iteration yields a feasible ν ∈ P which satisfies E[G(ν)] ≥ (1− 1
e )G(ν∗)− ε.
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Proof of Theorem 2. We consider a DR-submodular function with L-Lipschitz gradient. Fur-

ther, we assume that G itself is C-Lipschitz. We analyze the gain made in a single step as

follows:

G(νk)− G(νk−1) ≥ 1
R
∇G(νk−1)>yk − Ld

2R2 (Lemma 43)

=
1
R
∇̂>k yk − 1

R

(
∇̂k −∇G(νk−1)

)>
yk − Ld

2R2

≥ 1
R
∇̂>k yk − b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2 (by Hölder’s inequality and ||y||1 ≤ b)

≥ 1
R
∇̂>k ν∗ − b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2 (by definition of yk)

=
1
R
∇G(νk−1)>ν∗ − 1

R

(
G(νk−1)− ∇̂k

)>
ν∗ − b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2

≥ 1
R
∇G(νk−1)>ν∗ − 2b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2

≥ 1
R

(
G(ν∗ + νk−1)− G(νk−1)

)
− 2b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2 (Lemma 44)

≥ 1
R

(
G(ν∗)− G(νk−1)

)
− 2b

R
||∇̂k −∇G(νk−1)||∞ −

Ld
2R2 (monotonicity)

By assumption that G is C-Lipschitz, ||∇G||∞ ≤ C. Via Jensen’s inequality, we have

E
[
||∇̂k −∇G(νk−1)||∞

]
≤
√

E
[
||∇̂k −∇G(νk−1)||2∞

]
≤ C√

m

where the last step uses that averaging over m independent samples reduces the variance

of ∇̂k by a factor of m. Hence we have

E
[

G(ν∗)− G(νk)
]
≤
(

1− 1
R

)
E
[

G(ν∗)− G(νk−1)
]
− 2bC

R
√

m
− Ld

2R2 .

and so
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E
[

G(ν∗)− G(νR)
]
≤
(

1− 1
R

)R

E
[
G(ν∗)− G(ν0)

]
−

R−1

∑
k=0

2bC
R
√

m
−

R−1

∑
k=0

Ld
2R2

≤
(

1− 1
R

)R

E
[
G(ν∗)− G(ν0)

]
− 2bC√

m
− Ld

2R

and hence

E
[

G(ν∗)− G(νR)
]
≤ 1

e
[G(ν∗)− G(0)]− 2bC√

m
− Ld

2R
.

Choosing m =
(

4bC
ε

)2
and R = Ld

ε completes the proof.

Now, the result for our problem follows by noting the appropriate values for the Lipschitz

constant and size of the feasible set. Note that the stochastic objective H := E[G(·, ξ)] inherits

the smoothness properties of the deterministic objective since it is a convex combination of

such functions. Using the same reasoning as the deterministic case, the rescaled objective

H
H(ν∗) satisfies

∣∣∣∣∣∣∇ H
H(ν∗)

∣∣∣∣∣∣
∞
≤ T

(1−Umax)
and

∣∣∣∣∣∣∇2 H
H(ν∗)

∣∣∣∣∣∣
∞
≤
(

T
1−Umax

)2
. Via Lemma 42, this

yields immediate bounds for the Lipschitz constants C and L. Moreover, d = b = K.

Plugging these values into Theorem 28 yields the result.

D.2 Experiments

We now provide additional detail about the data sources used in the experiments.

D.2.1 TB

• Annual death probabilities µ: Calculated from WHO life tables (available at http:

//apps.who.int/gho/data/?theme=main&vid=61780)

• Total population N: reported in United Nations Statistics Division Demographic

Statistics (available at http://data.un.org/Data.aspx?d=POP&f=tableCode%
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3A22)

• Clearance rate ν: Taken from RNTCP Annual Performance Reports (available at http:

//tbcindia.gov.in/index4.php?lang=1&level=0&linkid=380&lid=2746).

• Most individuals with untreated TB will die within three years1. We set the annual

probability of death for TB patients such that 90% will die after 3 years of infection.

D.2.2 Gonorrhea

• Estimates of prevalence I: U.S. Centers for Disease Control. https://www.cdc.

gov/std/stats15/tables/21.htm Table 21. Gonorrhea — Reported Cases and

Rates of Reported Cases by Age Group and Sex, United States, 2011-2015.

• Annual probability of death µ: Calculated from WHO life tables (available at http:

//apps.who.int/gho/data/?theme=main&vid=61780)

• Total population N: Taken from US Census Data (Annual estimates of the resident

population by single year of age and sex for the United States: April 1, 2010 to July 1,

2016 (NC-EST2016-AGESEX-RES), available online at https://www.census.gov/

data/datasets/2016/demo/popest/nation-detail.html)

• Once detected, most cases of gonorrhea can be effectively treated within two or three

months, so the national clearance rate for this annual model depends on the detection

rate of the disease. The clearance rate therefore varies over the samples used to

calculate the transmission matrix.

• We assume no one dies from gonorrhea. Death rates are similar to the non-disease

death rates.

1Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJD. Natural History of
Tuberculosis: Duration and Fatality of Untreated Pulmonary Tuberculosis in HIV Negative Patients: A Systematic
Review. Pai M, ed. PLoS ONE. 2011;6(4):e17601. doi:10.1371/journal.pone.0017601.
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Appendix E

Appendix to Chapter 7

E.1 Price of fairness

Theorem 17. PoFM is unbounded.

Proof. Consider a graph G with two components: K which consists of 2 connected vertices,

and S which is a star with s + 1 nodes. Let the first group C1 have only one node in K. All

remaining nodes belong to the second group C2, including one node x1 in K and the central

node of the star x2. We have k = 1 seed.

It is clear that the optimal seeding configuration is to seed x2, which gives IOPT = 1+ ps.

However, this is not a maximin fair seeding, as C1 receives 0 influence. Instead, seeding

x1 is maximin fair, giving C1 p influence and C2 1 influence, giving a maximin utility

UMaximin({x1}) = min(p, 1
s+2 ). In this case, IMaximin = 1 + p.

As s→ ∞, PoFMaximin = 1+ps
1+p becomes unboundedly large.

Theorem 14. UMaximin and URational are not submodular.

We divide the proof of this theorem into two parts:

Proposition 3. Maximin utility UMaximin is not submodular.

Proof. Let us consider a graph with 4 nodes {x, a, b, c} where {x, a} form community C1

and {b, c} form community C2. Let A = {a, b} and B = {a, b, c} be two possible seeding
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Figure E.1: Example undirected network with unbounded PoF under maximin fairness

configurations.

Notice that C1 receives 1 influence in both configurations, which is weakly less than the

influence received by C2, and so, UMaximin(A) = UMaximin(B) = 1/2.

Now, consider adding x to the A and B. UMaximin(A ∪ {x}) = 1/2 since C2 remains

incompletely seeded. But UMaximin(B ∪ {x}) = 1 since both groups are fully seeded.

Proposition 4. Group rational utility URational is not submodular.

Proof. Recall the definition of group rational utility:

URational(A) =


IG(A), i f diversity constraints satis f ied

0, otherwise.

Let us consider the same graph as in Conjecture 3 with 4 nodes {x, a, b, c} where {x, a}
form community C1, and {b, c} forms community C2. k = 4 seeds are available, and so

therefore the group rational constraints are only satisfied by seeding all vertices.
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Figure E.2: Example showing non-submodularity of maximin fairness

Let A = {a, b} and B = {a, b, c}. It is easy to verify that URational(A) = URational(B) =

URational(A ∪ {x}) = 0 since none of these satisfy all group rational constraints. However,

URational(B ∪ {x}) > 0, and so therefore f (A ∪ {x})− f (A) < f (B ∪ {x})− f (B) for A ⊆ B,

which contradicts the definition of submodularity.

Theorem 19. Given propagation probability p > 0, it is possible to construct two families of graphs

G with groups C1 and C2, and G′ with groups C′1 and C′2, where G′ = G C′1 = C1 and C′2 is obtained

from C2 by the addition of one vertex x1 (x1 ∈ C1, x1 /∈ C2. It is possible for lim
n→∞

PoFMaximin
G′

PoFMaximin
G

→ ∞.

Proof. Consider a graph G with two star components — S1 with s + 1 vertices with a central

node x1, and S2 with t + 2 vertices with central node x2 (s > t) — and r isolated nodes.

There are two groups: C1 contains 2 vertices, x1, a non-central node from S2 and the r− 2

isolated nodes; C2 contains s + t + 1 remaining vertices, including x2 (s > t and r > 2.)

There is one seed (k = 1), and a total of n = s + t + 3 nodes.

It is easy to see that the Maximin configuration is to seed x1, which gives C1 1 influence,
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Figure E.3: G with disjoint groups. Figure E.4: G′ with overlapping groups.

and C2 ps influence. This gives a Maximin influence IMaximin
G = 1 + ps.1

Now, consider a modified graph G′ = G, but with our groups modified by allowing

x2 to belong to both communities. That is, C′1 = C1 and C′2 = C2 ∪ {x2}. The Maximin

configuration has two possibilities: either {x1} remains the Maximin configuration, or {x2}
becomes the new Maximin configuration. In order for the latter case to be true, seeding

{x2} must provide higher proportional influence to the least well-off group than seeding

{x1}.
Seeding {x2} generates 1+p

r+1 influence for C1, and 1+pt
s+t+1 influence for C2. Seeding {x1}

generates 1
r+1 influence for C1, and ps

s+t+1 . In order for {x2} to be the preferred seeding

configuration, it must be true that min( 1+p
r+1 , 1+pt

s+t+1 ) > min( 1
r+1 , ps

s+t+1 ). It is sufficient to

require that 1+p
r+1 > 1

r+1 and 1+pt
s+t+1 > 1

r+1 . The first condition is true for all p > 0. The second

condition is true for t > s
p(r+1)−1 − r

p(R+1)−1 . Thus, let us set r = s + 1
p − 1 (which turns the

denominators to p) and so t > 1
p will satisfy the second condition.

Then,

lim
n→∞

PoFMaximin(G′)
PoFMaximin(G)

= lim
n→∞

IMaximin(G)

IMaximin(G′)

= lim
n→∞

1 + sp
1 + p(t + 1)

= lim
n→∞

1 + sp
2 + p

1We do not need to calculate UMaximin explicitly at any point in this proof as it is not required for the proof
to work.
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= ∞

E.2 Analysis of multiobjective submodular maximization prob-

lem

Consider a collection of monotone submodular functions f1... fm with corresponding multi-

linear extensions F1...Fm. We will assume that the maximum singleton value of any item in

the ground set V is bounded as fi{v} ≤ b for all i ∈ [m], v ∈ V. Suppose that we are given

a target value Wi for each fi and would like to find a set S with |S| ≤ k which guarantees

fi(S) ≥ Wi for all i. We are promised that such an S exists. We will give an approximation

algorithm for this problem which improves in terms of both runtime and approximation

ratio on the best current algorithms, given by Udwani [Udw18], who in turn build on the

work of Chekuri et al. [CVZ10].

Our algorithm follows the overall template of [Udw18], which carries out three steps

(given a precision level ε).

1. Make a pass over the ground set, maintaining a set S1. Add to S1 every item which

has value at least ε3Wi for some fi.

2. Define P(M) to be the uniform matroid polytope for budget k− |S1|. Use a subroutine

to find a point x ∈ P(M) satisfying Fi(x|xS1) ≥ α (Wi − fi(S1))− ε for all i and some

approximation ratio α. This is the key step where we improve the runtime and

approximation ratio.

3. Round x to a set S2 using the swap rounding algorithm of [CVZ10] Output S1 ∪ S2.

Our primary technical contribution is an algorithm for the second step which guarantees

α =
(
1− 1

e

)
. It uses access to three kinds of stochastic oracles for the functions and their

multilinear extensions:
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1. A stochastic value oracle for singletons Ai
val corresponding to each fi. Given an item v,

this oracle returns a value Ai
val(v) with E

[
Ai

val(S)
]
= fi({v}) and Var

[
Ai

val(S)
]
≤ cval.

2. A stochastic gradient oracle Ai
grad for each multilinear extension Fi. Given a point

x ∈ P(M), Ai
grad(x) satisfies E

[
Ai

grad

]
= ∇xFi(x) and

∥∥∥Ai
grad(x)

∥∥∥
∞
≤ cgrad

3. A stochastic gradient oracleAj
item corresponding to each item j ∈ [n]. Given a point x ∈

P(M), Aj
item(x) satisfies E

[
Aj

item(x)
]
=
[
∇xj F1(x)...∇xj Fm(x)

]
and

∥∥∥Aj
item(x)

∥∥∥
∞
≤

citem. Note that this can be simulated from the above oracle, but may sometimes admit

more efficient implementations.

We now analyze this algorithm. We start by recalling a technical lemma on the smooth-

ness of the multilinear extension:

Lemma 45 (Hassani et al. [HSK17], Lemma C.1). For any monotone submodular set function

f and its multilinear extension F, ||∇F(x)−∇F(y)||∞ ≤ b||x− y||1 where b = maxv∈V f ({v}).
That is, F is b-smooth with respect to the `1 norm.

Lemma 46. F is b-Lipschitz in the `1 norm.

Proof. Recall that ∇xj F(x) = ES∼x[ f (S ∪ {j}) − f (S \ {j})] CITE, where S ∼ x denotes

including each j in S independently with probability xj. By submodularity, ES∼x[ f (S ∪
{j})− f (S \ {j})] ≤ f ({j}) ≤ b. Hence, ||∇xj F(x)||∞ ≤ b which proves the lemma.

Next, we show a guarantee for the output of mirror descent in step 2(a).

Lemma 47. For some x ∈ P(M), suppose that there exists a v∗ ∈ P(M) such that v∗ · ∇Fi(x) ≥
Wi − Fi(x) for all i = 1...m. Then, S-SP-MD returns a v satisfying v · ∇Fi(x) ≥ (1− ε)(Wi −

Fi(x))− ε for all i with probability 1− δ. There are O

((
cgrad
√

k log n+kcitem
√

log n
)2

ε4 log 1
δ

)
iterations,

each requiring one call to oracles Ai
grad and Aj

item for some i and j, and O(n + m) additional work.

Proof. Our objective is to find a v satisfying v · Fi(x) ≥ (1− ε)(Wi − Fi(x))− ε, under the

guarantee that such a v exists. Note that we call S-SP-MD only on the set of indices I where
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Wi − Fi(x) ≥ ε. For all other indices, where the current solution is already within ε of the

target, monotonicity of the Fi guarantees that v · Fi(x) ≥ 0 ≥Wi − Fi(x)− ε.

The feasibility problem on the groups in I is equivalent to solving maxmin problem

max
v∈P

min
i∈I

v · ∇Fi(x)
Wi − Fi(x)

To see this, let OPT denote the optimal value for the maxmin problem; we are guaranteed

OPT ≥ 1. If we have v with maxmin value at least OPT − ε, then v satisfies

v · ∇Fi(x) ≥ (1− ε)(Wi − Fi(x)) ∀i ∈ I

We now prove that S-SP-MD produces a v with maxmin value at least OPT − ε. Let A

be a matrix where column i is ∇Fi(x)
Wi−Fi(x) for each i ∈ I , and define g(v, y) = v>Ay. Let ∆(I)

be the |I|-dimensional probability simplex. We would like to solve the problem

max
v∈P(M)

min
y∈∆(I)

g(v, y)

which is easily seen to be equivalent to the original maxmin problem.

We will solve the above saddle point problem by running stochastic saddle point mirror

descent with the negative entropy mirror map on the function g. We obtain stochastic

estimates of ∇vg(v, y) and ∇yg(v, y) via calls to input the oracles. First, note that

∇vg(v, y) = Ay = ∑
i∈I

yi A·,i = E
i∼y

[A·,i]

where i ∼ y denotes drawing index i with probability yi (recall that y ∈ ∆(I) is a

probability distribution). Hence, we can obtain an estimate ∇̂v of ∇vg(v, y) by sampling

i ∼ y and returning 1
Wi−Fi(x)Ai

grad. We are guaranteed
∥∥∇̂v

∥∥
∞ ≤

cgrad

Wi−Fi(x) ≤
cgrad

ε . We take a

similar strategy for ∇yg(v, y): v>A = k
( 1

k v
)

Â = k Ej∼ 1
k v[vj Aj] (since 1

k vj is a probability
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distribution). Hence, we can sample j ∼ 1
k v and return ∇̂y = k · diag

(
1

~W−~F(x)

)
Aj

item(x).

This satisfies
∥∥∇̂y

∥∥
∞ ≤ k

ε citem.

Note that we can bound the diameter of P(M) with respect to the mirror map by√
k log n (see [HSK17]) and the diameter of ∆m by

√
log m (see [NJLS09]). We will run

mirror descent for T′ iterations. Let x̄ = 1
T′ ∑T′

t=1 xt and ȳ = 1
T′ ∑T′

t=1 yt. Now applying

Proposition 3.2 of Nemirovski et al. [NJLS09] implies that after T′ iterations we have

Pr

[
max

v∈P(M)
g(v, ȳ)− min

y∈∆(I)
g(v̄, y) ≥ (8 + 2Ω)

√
5
(
cgrad

√
k log n + kcitem

√
log n

)
ε
√

T

]
≤ 2e−Ω

and so taking T′ = O

((
cgrad
√

k log n+kcitem
√

log n
)2

log 1
δ

ε4

)
ensures that

min
y∈∆(I)

g(v̄, y) ≥ max
v∈P(M)

min
y∈∆(I)

g(v, y)− ε.

holds with probability at least 1− δ.

Theorem 29. Suppose that there exists some x ∈ P(M) satisfying Fi(x) ≥ Wi for all i =

1...m. Then, after T = bk2

ε iterations, the algorithm returns a point xT satisfying Fi(xT) ≥

(1− ε)
(
1− 1

e

)
Wi − ε for all i. Each iteration requires one call to mirror descent at success

probability δ′ = δε
bk2 and precision level ε′ = ε

2 , O(m) ε-accurate value oracle calls, and O(n)

additional work.

Proof. We analyze the progress that the algorithm makes with respect to each Fi over a single

step t. Using the guarantee for the subroutine mirror descent (run with a precision level ε1

to be set below), and assuming that the values {Wi} are feasible, we have with probability

at least 1− δ

Fi(xt)− Fi(xt−1) ≥ 1
T

[
∇Fi(xt−1) · vt

]
− b

2

∥∥∥xt − xt−1
∥∥∥2

1
(Lemma 45)

≥ 1
T

[
∇Fi(xt−1) · vt

]
− bk2

2T2 (`1 diameter of P(M))

≥ 1
T

(
(1− ε1)(Wi − Fi(xt−1))− ε1

)
− bk2

2T2 (Lemma 47)

which implies
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Wi − Fi(xt) ≤
(

1− 1− ε1

T

) [
Wi − Fi(xt−1)

]
+

ε1

T
+

bk2

2T2

and so after T steps

Wi − Fi(xT) ≤
(

1− 1− ε1

T

)T [
Wi − Fi(x0)

]
+ ε1 +

bk2

2T

≤ 1
e1−ε1

Wi + ε1 +
bk2

2T

holds with probability at least 1− Tδ via union bound. Taking ε1 = ε
2 , T = bk2

ε , and

running mirror descent with success probability δ
T at each iteration ensures that

Fi(xT) ≥
(

1− 1
e1−ε

)
Wi − ε

≥ (1− ε)

(
1− 1

e

)
Wi − ε

holds for all i with probability at least 1− δ, which completes the guarantee for the

solution quality. To obtain the bound on additional work done by the algorithm, we note

that the only operation performed besides calling mirror descent is adding vt to the current

iterate, which takes time O(n).

Theorem 30. Given a feasible set of target values W1...Wn, Algorithm 11 outputs a set S such that

fi(S) ≥ (1− ε)
(

1− m
k(1+ε′)ε3

) (
1− 1

e

)
Wi − ε with probability at least 1− δ. Asymptotically as

k → ∞, the approximation ratio can be set to approach 1− 1/e so long as m = o(k log3 k). The

algorithm requires O(nm) ε′-accurate value oracle calls, O(m bk2

ε log 1
δ ) ε-accurate value oracle calls,

O
(

bk4c2

ε5 log
(

n + bk
δε

))
calls to Agrad and Aitem, and O

(
nk2b2

ε2 + mk2b
ε + k3b2

ε2

)
additional work.

Proof. ThresholdInclude produces a set S1 for which each item j ∈ S1 satisfies fi({j}) ≥
Wi(1+ ε′)ε3 for some i, and any j 6∈ S1 satisfies fi({j}) ≤Wiε

3 for all i. Note that there can be

at most 1
(1+ε′)ε3 items with fi({j}) ≥Wi(1 + ε′)ε3 for any given i (combining submodularity

with our WLOG assumption that fi is upper bounded by Wi). Hence, |S1| ≤ m
(1+ε′)ε3 . Define
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k1 = k− |S1|.
Now we lower bound the marginal gain of the fractional vector x returned by Multi-

objectiveFW. So long as the target values { k1
k (Wi − fi(S1))} are feasible, we are guaran-

teed that Fi(x|S1) ≥ k1
k

(
1− 1

e

)
(Wi − fi(S1))− ε. for all i. To see feasibility, let S∗ be the

promised set satisfying the overall feasibility problem (i.e., fi(S∗) ≥ Wi for all i). Let xS

denote the indicator vector of the set S. We have that |S∗ \ S1| ≤ k, and Fi(xS∗\S1
|xS1) =

fi(S∗|S1) ≥ Wi − fi(S1). Using Corollary 3 of [Udw18], the point x′ = k1
k xS∗\S1

satisfies

Fi(x′|xS1) ≥ k1
k (Wi − fi(S1)). x′ is also feasible for the continuous problem since ||x′||1 ≤ k1.

Now applying Theorem 29 guarantees that Fi(x|S1) ≥ k1
k

(
1− 1

e

)
(Wi − fi(S1)) − ε with

probability at least 1− δ.

Lastly, we need to handle the rounding process. We first take the point x and ap-

proximately decompose it into a convex combination of integral points of P . This is

done using the algorithm of Mirrokni et al. [MLVW17], which produces a point xint satis-

fying ||xint − x||1 ≤ ε along with a decomposition of xint into O( k2

ε2 ) integral points of P
([MLVW17], Proposition 5.1). If we run this algorithm with precision level ε

b , Lemma 46 guar-

antees that |Fi(xint)− Fi(x)| ≤ ε for all i and hence Fi(xint|S1) ≥ k1
k

(
1− 1

e

)
(Wi − fi(S1))− 2ε.

Applying Lemma 2 of [Udw18] (who summarize the guarantee for swap rounding proved

by [CVZ10]), carrying out O
(
log 1

δ

)
iterations of swap rounding and taking the best out-

come produces a set S2 which satisfies f (S2|S1) ≥ (1− ε) k1
k

(
1− 1

e

)
(Wi − fi(S1))− 3ε with

probability at least 1− δ, provided that the best outcome is determined by calling a value

oracle with precision level ε. Adding up the final guarantee, we have

f (S) = f (S1 ∪ S2)

= f (S1) + f (S2|S1)

≥ (1− ε)
k1

k

(
1− 1

e

)
W1 − 3ε

≥ (1− ε)

(
1− m

kε3(1 + ε′)

)(
1− 1

e

)
W1 − 2ε

and now rescaling ε by a factor 1
3 gives the final approximation guarantee. The asymp-
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totic 1− 1/e approximation follows by setting ε as in [Udw18].

We now add up the final runtime. The first thresholding step requires n value oracle calls

to each of the m objectives at precision level ε′. MultiobjectiveFW requires bk2

ε iterations,

each of which calls mirror descent once. Each invocation of mirror descent requires a total

number of oracle calls which is bounded as O
(

1
ε4

(
cgrad

√
k log n + citemk

√
log n

)2
log bk

δε

)
.

Recalling that c = max{citem, cgrad}, this is upper bounded by O
(

c2k2

ε4 log
(

n + bk
δε

))
. Each

iteration of MultiobjectiveFW also uses m value oracle calls at precision level ε. Finally,

each iteration uses additional O(n+m) overhead, for a total of O
(
(n+m)k2b

ε

)
. In the rounding

procedure, we first need to involve ApproximateCaratheodory with precision level ε
b ,

which per Proposition 5.1 of [MLVW17] requires k2b2

ε iterations, and one linear maximization

over P per iteration. Since P is the uniform matroid polytope, each linear maximization

takes time O(n), and so this stage contributes time O
(

nk2b2

ε

)
. Lastly, we have the O

(
log 1

δ

)
iterations of swap rounding. Since xint was decomposed into k2b2

ε2 integral points, swap

rounding takes time k3b2

ε2 for each iteration [CVZ10]. We also need one ε-accurate value oracle

call to each of the objective functions per iteration so that we can select the (approximately)

best set. Combining these bounds results in the final stated runtime.

E.3 Efficient stochastic gradient estimates

We now give efficient implementations for the oraclesAgrad andAitem. They run in combined

time O
(

k (|V|+ |E|) log2 |V|
δ

)
time, where the operation succeeds with probability 1− δ.

Our implementations guarantee c ≤ 2b whenever they succeed.

The starting point is to recall that the gradients of the multilinear extension Fi satisfy

∇xj Fi = E
S∼x

[ f (S ∪ {j})− f (S \ {j})]

= E
S∼x,ξ∼P

[ f (S ∪ {j}, ξ)− f (S \ {j}, ξ)] (E.1)

Note that for any fixed i and xj, we can obtain a stochastic estimate of this quantity in
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time O(|V|+ |E|) by first drawing a set S ∼ x, simulating the cascade process, and counting

the number of of nodes reached with and without item j. By submodularity, the resulting

estimate satisfies f (S ∪ {j}, ξ)− f (S \ {j}, ξ) ≤ b for any S and ξ. Naively repeating this

process over all i, j would hence require time O(|V|(|V|+ |E|)m). We now show how to

implement the required oracles by drawing a number of samples that scales only with

k log |V| instead of |V|.
Implementing Aitem is simpler because we only need to estimate

[
∇xj F1(x)...∇xj Fm(x)

]
for a single fixed xj. Hence, we can draw a single S, ξ, count the number of nodes reachable

in each group under ξ with set S \ {j}, and then count the number of nodes reachable with

set S ∪ {j}. This takes time O (|V|+ |E|).
Efficiently implementing Agrad is more difficult since we need to simultaneously estimate

∇Fi with respect to every xj; hence, naive enumeration would take O(|V|2) time. We now

detail our strategy. We start by considering a given sample (S, ξ) and show how to estimate

the marginal contribution fi(S ∪ {j}, ξ)− fi(S, ξ) for a given i and and all j 6∈ S in total

runtime O
(
(|V|+ |E|) log |V|δ

)
. We first remove all nodes from G that are reachable from

S under ξ, which takes time O (|V|+ |E|). Any node removed in this stage has marginal

contribution 0. Next, we remove all nodes that are isolated in the remaining subgraph and

assign them marginal contribution 1 if they are part of group i. This stage takes time O(|V|).
Now we deal with the remaining nodes. Here, determining their marginal contribution

of node v to group i amounts to estimating the number of nodes of group i which are

reachable from v in ξ. We use the size estimation framework of Cohen [Coh97], which allows

us to simultaneously produce an unbiased estimate of every remaining node’s contribution

to group i in time O (|E|). We apply the weighted version of the estimator, where every

node in group i has weight 1 and all other nodes have weight 0. We take O(
(

log |V|δ

)
independent repetitions of the estimation process, resulting in O

(
|E| log |V|δ

)
runtime. For

a given group i, and using ` repetitions, Cohen’s estimator produces an estimate ∆(v) for

each node which satisfies

1. E[∆(V)] = fi({v}|S)
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2. Pr [|∆(v)− fi({v}|S)| ≥ ε fi({v}|S)] ≤ e−Ω(ε2`) for any 0 ≤ ε ≤ 1

We fix ε = 1 as an arbitrary constant and use ` = O
(

log |V|δ

)
. This allows us to use

union bound combined with the second property of the estimator to argue that over all

nodes combined

Pr [∆(v) ≥ 2b] ≤ Pr [∆(v) ≥ 2 fi({v}|S)] ≤ δ

and so the resulting gradients will satisfy our stated bounds on citem and cgrad with high

probability.

Our overall strategy is to generate enough samples that every node is missing from S

in at least one of them. Then, we can use a node’s marginal contribution in the sample

from which it missing as its gradient estimate. Note that a node j is absent from any given

sample with probability 1− xj. Given budget k, at most k
1− 1

k+1
= k + 1 nodes can have

xj ≥ 1− 1
k+1 . For any such node, we can explicitly estimate a sample of Equation E.1 using

O (|V|+ |E|) time per node, for O (k (|V|+ |E|)) total. For the remaining nodes, a simple

argument shows that taking (k + 1) log |V|δ samples is sufficient to ensure that each node is

missing from at least one sample with combined probability 1− δ. Summing up, the total

runtime to generate Â is O
(

k (|V|+ |E|) log2 |V|
δ

)
.

E.4 Runtime comparison with previous work

The best previous algorithm for multiobjective submodular maximization [Udw18] uses

the same overall framework as us, but uses a MWU algorithm for the second stage (the

continuous maximization problem). The MWU algorithm runs O
( m

ε2

)
iterations, where each

iteration requires a call to a greedy algorithm that maximizes a weighted combination of the

fi. Using the best implementation of the greedy algorithm [BV14]2 requires O
( n

ε log n
ε

)
value

2While there are efficient special-purpose techniques for influence maximization on a given graph, it is not
obvious how to adapt them to deal with the weighted combination of group objectives.
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oracle calls, for O
( n

ε3 log m log n
ε

)
such calls in total. By comparison, our algorithm accesses

the function through calls to the gradient oracles Aitem and Agrad. It makes a number

of calls to these oracles which is only logarithmic in n, scaling as O
(

bc2k4

ε3 log
(

n + bk
δε

))
.

Since gradient oracle calls can typically be implemented in similar asymptotic runtime to

value oracle calls for common classes of functions (as we have demonstrated for influence

maximization), our algorithm effectively saves a factor O(n) runtime in exchange for worse

dependence on k and b. Since we expect n to grow much faster than k or b (in many typical

applications, b is a small constant [HSK17]), this is often an improvement in asymptotic

runtime. For influence maximization in particular, it is easy to see that a value oracle call

for a given group cannot be implemented in less than O(|V|+ |E|) time, which matches (up

to log factors) our stochastic gradient oracle’s dependence on the graph size.
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Appendix F

Appendix to Chapter 10

F.1 Proofs

F.1.1 Exact expression for gradients

Define Ri = ∑n
j=1 rji and Ci = ∑n

j=1 rjixj. We will work with Ci ∈ Rp×1 as a column vector.

For a fixed i, j, we have

∂ fi,·
∂xj

= −
Rixj

[
∂rji
∂xj

]>
− Ci

[
∂rji
∂xj

]>
R2

i
− rji

Ri
I

where I denotes the p-dimensional identity matrix. Similarly, fixing i, k gives

∂ fi,·
∂µk

= δik I −
Ri ∑n

j=1 xj

[
∂rji
∂µk

]>
− Ci

[
∑n

j=1
∂rji
∂µk

]>
R2

i

F.1.2 Guarantee for approximate gradients

Theorem 31. Suppose that for all points j, ||xj − µi|| − ||xj − µc(j)|| ≥ δ for all i 6= c(j) and

that for all clusters i, ∑n
j=1 rji ≥ αn. Moreover, suppose that βδ > log 2βK2

α . Then,
∣∣∣∣∣∣ ∂ f

∂µ − I
∣∣∣∣∣∣

1
≤

exp(−δβ)
(

K2β
1
2 α−K2β exp(−δβ)

)
where || · ||1 is the operator 1-norm.

We focus on the off-diagonal component of ∂ fim
∂µk`

, given by
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A(i,m),(k,`) = −
Ri ∑n

j=1 xm
j

[
∂rji

∂µ`
k

]
− Cm

i

[
∑n

j=1
∂rji

∂µ`
k

]
R2

i

The key term here is ∂rji

∂µ`
k
. Let sji = −β||xj − µi|| Since r is defined via the softmax

function, we have

∂rji

∂µ`
k
=

∂rji

∂sjk

∂sjk

∂µ`
k

where

∂rji

∂sjk
=


rji(1− rji) if i = k

−rjirjk otherwise.

Note now via Lemma 48, in both cases we have that

∣∣∣∣ ∂rji

∂sjk

∣∣∣∣ ≤ K exp(−βδ)

Define ε = K exp(−βδ) and note that we have that
∣∣∣ ∂sjk

∂µ`
k

∣∣∣ ≤ β, since we defined s in terms

of cosine similarity and have assumed that the input is normalized. Putting this together,

we have

∣∣∣A(i,m),(k,`)

∣∣∣ ≤ ∑n
j=1 xm

j εβ

Ri
+

Cm
i nεβ

R2
i

≤
εβ ∑n

j=1 xm
j

αn
+

µm
i nεβ

Ri

≤
εβ ∑n

j=1 xm
j

αn
+

µm
i εβ

α

and so
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||A||1 = max
(k,`)

∑
(i,m)

A(i,m),(k,`)

≤ max
(k,`)

∑
(i,m)

εβ ∑n
j=1 xm

j

αn
+

µm
i εβ

α

≤ max
(k,`)

∑
i

εβn
αn

+
εβ

α
(since ||xj||1, ||µi||1 ≤ 1)

≤ 2Kεβ

α

=
2K2β exp(−βδ)

α
.

Since by assumption βδ > log 2βK2

α , we know that ||A||1 < 1 and applying Lemma 49

competes the proof.

Lemma 48. Consider a point j and let i = arg maxk rjk. Then, rji ≥ 1
1+K exp(−βδ)

, and correspond-

ingly, ∑k 6=i rjk ≤ K exp(−βδ)
K exp(−βδ)+1 ≤ K exp(−βδ).

Proof. Equation 4 of [Tit16] gives that

rij ≥∏
k 6=i

1
1 + exp(−(si − sk))

.

Since by assumption we have −||xj − µi|| ≥ δ||xj − µk||, we obtain

rij ≥∏
k 6=i

1
1 + exp(−δβ)

≥ 1
1 + K exp(−δβ)

(using that exp(−δβ) ≤ 1).

which proves the lemma.

Lemma 49. Suppose that for a matrix A, ||A− I|| ≤ δ for some δ < 1 and an operator norm || · ||.
Then, ||A−1 − I|| ≤ δ

1−δ .

Proof. Let B = I − A. We have
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A−1 = (I − B)−1

=
∞

∑
i=0

Bi (using the Neumann series representation)

= I +
∞

∑
i=1

Bi

and so ||A−1 − I||∞ =
∣∣∣∣∑∞

i=1 Bi
∣∣∣∣

∞. We have∣∣∣∣∣
∣∣∣∣∣ ∞

∑
i=1

Bi

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞

∑
i=1
||Bi||∞

≤
∞

∑
i=1
||B||i∞ (since operator norms are submultiplicative)

=
δ

1− δ
(geometric series).

F.2 Experimental setup details

F.2.1 Hyperparameters

All methods were trained with the Adam optimizer. For the single-graph experiments, we

tested the following settings on the pubmed graph (which was not used in our single-graph

experiments):

• β = 1, 10, 30, 50

• learning rate = 0.01, 0.001

• training iterations = 100, 200, ..., 1000

• Number of forward pass k-means updates: 1, 3

• Whether to increase the number of k-means updates to 5 after 500 training iterations.

• GCN hidden layer size: 20, 50, 100
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• Embedding dimension: 20, 50, 100

For all single-graph experiments we used β = 30 for the facility location objective and

β = 50 for community detection, γ = 100, GCN hidden layer = embedding dimension =

50, 1 k-means update in the forward pass, learning rate = 0.01, and 1000 training iterations,

with the number of k-means updates increasing to 5 after 500 iterations.

We tested the following set of hyperparameters on the validation set for each graph

distribution

• β = 30, 50, 70, 100

• learning rate = 0.01, 0.001

• dropout = 0.5, 0.2

• training iterations = 10, 20...300

• Number of forward pass k-means updates: 1, 5, 10, 15

• Hidden layer size: 20, 50, 100

• Embedding dimension: 20, 50, 100

We selected β = 70, learning rate = 0.001, dropout = 0.2, and hidden layer = embedding

dimension = 50 for all experiments. On the synthetic graphs we used 70 training iterations

and 10 forward-pass k-means updates. For pubmed, we used 220 and 1, respectively.

F.2.2 Synthetic graph generation

Each node has a set of attributes yi (in this case, demographic features simulated from

real population data); node i forms a connection to node j with probability proportional

to e−
1
ρ ||yi−yj||d(j) where d(j) is the degree of node j. This models both the homophily and

heavy-tailed degree distribution seen in real world networks. We took ρ = 0.025 to obtain

a high degree of homophily, so that there is meaningful community structure. In order to
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make the problem more difficult, our method does not observe the features y; instead, we

generate unsupervised features from the graph structure alone using role2vec [ARL+18]

(which generates inductive representations based on motif counts that are meaningful across

graphs). Each graph has 500 nodes.

F.2.3 Code

See https://github.com/bwilder0/clusternet for code and data used to run the

experiments.

F.2.4 Hardware

All methods were run on a machine with 14 i9 3.1 GHz cores and 128 GB of RAM. For fair

runtime comparisons with the baselines, all methods were run on CPU.

F.3 Results for K = 10

Table F.1: Results for community detection. “-" for GCN-2Stage-Newman in the Learning + optimization
section denotes that the method could not be run due to numerical issues.

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.56 0.53 0.28 0.47 0.28 0.71 0.76 0.52 0.55 0.80
GCN-e2e 0.01 0.01 0.06 0.08 0.00 0.07 0.08 0.14 0.15 0.15
Train-CNM 0.20 0.44 0.09 0.01 0.17 0.08 0.34 0.05 0.60 0.80
Train-Newman 0.08 0.15 0.15 0.14 0.07 0.20 0.22 0.29 0.30 0.47
Train-SC 0.06 0.04 0.05 0.22 0.21 0.15 0.08 0.07 0.46 0.79
GCN-2stage-CNM 0.20 0.23 0.18 0.32 0.08 - - - - -
GCN-2stage-Newman 0.01 0.00 0.00 - 0.00 - - - - -
GCN-2stage-SC 0.13 0.18 0.10 0.29 0.18 - - - - -
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Table F.2: Results for facility location

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 9 14 7 5 2 8 13 6 5 2
GCN-e2e 12 15 8 6 4 10 14 7 5 4
Train-greedy 14 16 8 8 6 9 14 7 6 5
Train-gonzalez 11 15 8 7 6 9 13 7 6 2
GCN-2Stage-greedy 14 16 8 7 6 - - - - -
GCN-2Stage-gonzalez 12 16 8 6 5 - - - - -

F.4 Timing Results

We run experiments on Intel i9 7940X @ 3.1 GHz with 128 GB of RAM. We report runtime

in seconds. For algorithms with learned models, we report both the training time and the

time to complete a single forward pass.

Table F.3: Timing results for the community detection task (s)

cora cite. prot. adol fb

ClusterNet - Training Time 59.48 149.73 129.63 56.68 54.33

ClusterNet - Forward Pass 0.04 0.12 0.11 0.04 0.05

GCN-e2e - Training Time 36.83 54.99 34.60 29.04 28.17

GCN-e2e - Forward Pass 0.002 0.005 0.002 0.003 0.001

Train-CNM 1.31 1.28 1.02 1.03 2.94

Train-Newman 9.99 15.89 15.19 11.45 7.25

Train-SC 0.41 0.62 0.55 0.38 0.48

GCN-2Stage - Training Time 68.79 72.20 75.69 103.56 57.62

GCN-2Stage-CNM 119.34 178.39 159.64 101.64 142.02

GCN-2Stage-New. 37.96 58.26 51.70 33.14 43.88

GCN-2Stage-SC 0.40 0.61 0.50 0.33 0.36
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Table F.4: Timing results for the kcenter task (s)

cora cite. prot. adol fb

ClusterNet - Training Time 264.14 555.84 488.37 244.74 246.57

ClusterNet - Forward Pass 0.10 0.23 0.20 0.09 0.11

GCN-e2e - Training Time 237.68 511.23 446.76 229.49 221.28

GCN-e2e - Forward Pass 0.003 0.006 .005 0.004 .003

Train-Greedy 1029.18 2387 1966 619.06 1244.09

Train-Gonzalez 0.082 0.14 0.12 0.07 .066

GCN-2Stage - Training Time 73.82 70.21 103.98 75.48 104.66

GCN-2Stage-Greedy 1189.15 2367 2017 621.59 1237.871

GCN-2Stage-Gonzalez 0.18 0.28 0.25 0.13 0.13

Table F.5: Timing results in the inductive setting for community detection task (s)

synthetic pubmed

ClusterNet - Training time 6.57 13.74

ClusterNet - Forward Pass 0.003 0.008

GCN-e2e - Training time 11.40 15.86

GCN-e2e - Forward Pass 0.04 0.03

Train-CNM 0.08 0.17

Train-Newman 0.65 1.83

Train-SC 0.03 0.04

2Stage - Train 10.98 15.86

2Stage-CNM 3.23 13.73

2Stage-New. 1.12 4.29

2Stage-SC 0.04 0.10
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Table F.6: Timing results in the inductive setting for the kcenter task (s)

synthetic pubmed

ClusterNet - Training Time 14.36 43.06

ClusterNet - Forward Pass 0.005 0.02

GCN-e2e - Training Time 9.49 33.73

GCN-e2e - Forward Pass 0.01 0.02

Train-Gonzalez 0.07 0.49

Train-Greedy 4.99 32.7

2Stage - Train 11.00 15.78

2Stage-Gonzalez 0.07 0.07

2Stage-Greedy 5.31 16.16
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Appendix G

Appendix to Chapter 12

This section contains details of the methods (model used, parameter settings), strategy for

inference, experimental details of the modeled scenarios, discussion of mechanisms for

physical distancing, and additional results on model validation.

G.1 Methods

G.1.1 Model description

We develop an agent-based model for COVID-19 spread which accounts for the distributions

of age, household types, comorbidities, and contact between different age groups in a

given population. The model follows a susceptible-exposed-infectious-removed (SEIR) template

[VdDLM99, BKO15].

Specifically, we simulate a population of n agents (or individuals), each with an age ai, a

set of comorbidities ci, and a household (a set of other agents). We stratify age into ten-year

intervals and incorporate hypertension and diabetes as comorbidities. These comorbidities

are common worldwide [RAA+18] and have been associated with a higher risk of in-hospital

death for COVID-19 patients [ZYD+20]. However, our model can be expanded to include

other comorbidities of interest in the future. The specific procedure we use to sample agents

from the joint distribution of age, household structures, and comorbidities is described
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below.

The simulation tracks two states for each individual: the infection state and the isolation

state. The infection state is divided into {susceptible, exposed, infectious, removed}. Susceptible

individuals are those who have never been contacted by an infectious individual. Exposed

individuals are those who have had contact with an infectious individual, though not all

exposed individuals become infectious. If an exposed individual contracts the disease,

they proceed to the infectious state.1 Infectious is further subdivided into severity levels

{presymptomatic, mild, severe, critical}. We interpret mild severity as symptomatic (but

not requiring hospitalization), severe as requiring hospitalization, and critical as eligible

for intensive care unit (ICU) care. The removed state is further subdivided into {recovered,

deceased}. Individuals in all severity levels can transmit the disease, but those in the

presymptomatic state do so at a rate α < 1 times that of symptomatic cases. The decision to

incorporate reduced transmission for presymptomatic individuals is based on the fact that,

though infection by presymptomatic individuals has been observed in case clusters and in

examinations of serial intervals [BYW+20, RSS+20, DXW+20], available evidence suggests

that individuals with no or limited symptoms are less infectious than those with severe

symptoms [LPC+20]. Currently, our simulation incorporates two levels of infectiousness

(before and after the onset of symptoms), but it can be adjusted as better information on

how viral shedding increases with severity of illness becomes available. We acknowledge

that our assumptions surrounding transmissibility and disease severity – as derived from

existing literature – may serve as a limitation of our model, as many of these factors are

evolving over time.

Each individual has a separate isolation state {isolated, not isolated}. If isolated, the

individual is unable to infect others. We assume that (1) presymptomatic individuals are

never isolated, (2) mild individuals become isolated over a mean time of λisolate days (see

1Currently, our simulation implementation does not separately track individuals who are exposed but do
not become infected, and instead groups them with the susceptible population. This is because we assume that,
if exposed again, they will become infected with the same probability as an individual who has never been
exposed. However, the implementation can be modified to support either differing probabilities of contracting
the disease after first exposure or policies that treat exposed and susceptible individuals differently.
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Table 1) after the onset of symptoms, and (3) all severe and critical individuals are isolated.

However, our simulation framework can easily accommodate different sets of assumptions

about isolation (for example, preemptively isolating exposed individuals if they are known

to have had contact with an infectious agent).

The disease is transmitted over a contact structure, which is divided into in-household

and out-of-household groups. Each agent has a household consisting of a set of other agents.

Individuals infect members of their households at a higher rate than out-of-household

agents. We model out-of-household transmission using country-specific estimated contact

matrices [PCJ17]. These matrices state the mean number of daily contacts an individual of

a particular age strata has with individuals from each of the other age strata. We assume

demographics (including age and household distribution) in Hubei and Lombardy are

well-approximated by country-level data.

The model iterates over a series of discrete time steps, each representing a single day,

from a starting time t0 to an end time T. There are two main components to each time

step: disease progression and new infections. The progression component is modeled by

drawing two random variables for each individual each time they change severity levels

(e.g., on entering the mild state). The first random variable is Bernoulli and indicates

whether the individual will recover or progress to the next severity level. The second

variable represents the amount of time until progression to the next severity level. We use

exponential distributions for almost all time-to-event distributions, a common choice in the

absence of specific distributional information [All10, Col15]. The exception is the incubation

time between presymptomatic and mild states, where more specific information is available;

here, we use a log-normal distribution (see µe→m and σ2
e→m in Table 1) based on estimates

by [LGB+20]. Table 1 summarizes all distributions and their parameters.

In the new infections component, individuals in the susceptible state may enter the

exposed state. Infected individuals infect each of their household members with probability

ph at each time step. ph is calibrated so that the total probability of infecting a household

member before either isolation or recovery matches the estimated secondary attack rate for

406



household members of COVID-19 patients (i.e., the average fraction of household members

infected) [LEK20]. Infected individuals draw outside-of-household contacts from the general

population using the country-specific contact matrix. For an infected individual of age

group i, we sample ws
ij ∼ Poisson(Ms

ij) contacts for each age group j and setting s where

Ms is the country-specific contact matrix for setting s. We include contacts in work, school,

and community settings. Poisson distributions are a standard choice for modeling contact

distributions [PCJ17]. Then, we sample ws
ij contacts of age j uniformly with replacement,

and each contact is infected with the probability pinf, the probability of infection given

contact. There is evidence to suggest that the probability of infection is higher for an older

individual than younger given the same exposure [ZLL+20], consistent with decline in

immune function with age. We adjust for this by letting the probability of infection be βpinf

when the exposed individual is over the age of 60, for β > 1. β is calibrated to match the

fraction of deaths in China attributed to individuals over the age of 60, resulting in a value

of 1.25. This is consistent with the relationship between age and attack rate amongst close

contacts of a confirmed case reported by [ZLL+20], where the increase in risk of infection

for a contact over 65 years old was estimated in the range 1.12–1.92.

G.1.2 Sampling agents

Our process for sampling agents follows three steps that successively sample households,

individual agents within households, and comorbidities for each agent. Because the full

joint distributions over all of these quantities are not known, we implement a sampling

procedure that respects the marginal distributions of household structure and age, as well

as the marginal distribution for the occurrence of comorbidities within each age group.

First, we use information on the distribution of household structures to draw a type of

household (e.g., single person, couple, nuclear family, or multigenerational family). Second,

we sample the ages of the individual agents according to their role in the household (e.g.,

parent, child, or grandparent) combined with information about the age distribution of

the population and the intergenerational interval. For China, we use household distribu-
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tions from the 2010 Chinese census [HP15], intergenerational intervals from [HZWJ19],

and the age distribution provided by UN population statistics [Uni19]. For Italy, we use

demographic statistics from Statista online portal about the following: household structure

distribution [Sta18b], single-person households [Sta18e], couples with children [Sta18c] and

corresponding family size [Sta18a], and single parents with children [Sta18d]. Furthermore,

we assume that children could stay within the family until the age of 30 and that couples

without children were aged 30+, to account for societal patterns reported in familial studies

which may have affected household distribution metrics [CLT14]. In New York City, we

circumvent these steps by instead sampling individual households directly from census

microdata. We use the public use microdata from the 2015 American Community Survey

[Cen19]. We draw from household-level responses located in New York City, repeatedly

sampling a household of individuals with their reported ages until the desired population

size (8.4 million) is reached.

Third, we sample comorbidities from the corresponding country- and age-specific dis-

tributions. For China, we use estimates on age-specific prevalence of diabetes [XWH+13]

and hypertension [WCZ+18]. For Italy, we use estimates from the Global Burden of

Disease study on diabetes [RAA+18] and a recent study of age-stratified hypertension preva-

lence [MCM+17]. For New York City, we use city-level estimates of age-specific prevalence

for both comorbidities [fDCP17, oHH16]. We ensure that diabetes and hypertension are

appropriately correlated using a single global estimate for the probability of hypertension

in individuals with diabetes [TO17]. An important limitation of this study is that using

different data sources for comorbidity prevalence in each location (while necessary) may

introduce bias; our analyses could be refined if more comprehensive data sources became

available.

G.1.3 Estimating disease progression from age and comorbidities

Many of the parameters for this model are assigned values based on estimates in the

literature, shown in Table 1. However, we currently lack a detailed understanding of the joint
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impact of age and comorbidities on disease progression and mortality. Currently, estimated

infection fatality rates (IFRs) are available by age but not for each specific combination

of age and comorbidities. To obtain these specific estimates, we model the IFR with a

logistic regression fit to IFRs estimated by Verity et al. [VOD+20] on data from mainland

China. The logistic model is discussed in the next section. This model yields pm→d(ai, ci),

the country-independent probability that an individual i of age ai and comborbidity status

ci will die if infected with SARS-CoV-2. Corrections for country-specific differences in

mortality are handled via the parameter dmult.

The simulation also requires specific values for the probabilities of transitioning between

the disease states mild, severe, critical, and death. However, there is currently insufficient

information available to infer the probabilities of these individual transitions for each

combination of age and comorbidity. We assume that while the absolute values of these

probabilities may vary based on age and comorbidity, the ratios between them do not

exhibit such strong dependency. In particular, we assume that there are coefficients γs→c(ai)

and γc→d such that ps→c(ai, ci) = γs→c(ai)pm→s(ai, ci) and pc→d(ai) = γc→d pm→s(ai, ci). We

allow γs→c(ai) to be age-specific while assuming that γc→d is age-homogeneous because

of the information currently available to estimate them; namely, we set γs→c(ai) based on

the estimated probabilities of hospitalization from [VOD+20] and ICU admission by age

group in the US from [Tea20] and γc→d based on the probability of death for all critical

patients in China [fDCP20b]. Note that we assume both coefficients to be independent of

the comorbodities ci. Then, we can solve for pm→s(ai, ci) such that

pm→s(ai, ci) · γs→c(ai)pm→s(ai, ci) · γc→d pm→s(ai, ci) = pm→d(ai, ci),

and set ps→c(ai, ci) and pc→d(ai, ci) accordingly. Future work can relax the assumptions in

this process as more information becomes available about how age and comorbidity impact

the progression between disease states.
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G.1.4 Estimating mortality from age and comorbidities

We require a model of pm→d(ai, ci), however existing data sources only specify pm→d(ai) and

pm→d(ci). To infer the joint distribution, we assume a linear (logistic) interaction between

age bracket, diabetes status, and hypertension status. Specifically, we assume

pm→d(ai, ci) = σ
(

βage(ai) + βdiabetes1 [diabetes ∈ ci] + βhypertension1 [hypertension ∈ ci]
)

,

where βage(ai) has a value for each age bracket (e.g., 20-30, 30-40, etc., 7 in total) and

βdiabetes and βhypertension are scalars.

The marginal distribution pm→d(ai) is taken from [VOD+20], which corrects for underre-

porting of infections in China. To obtain a comparable marginal distribution pm→d(ci), we

scaled the reported CFR for each comorbidity group [fDCP20b] by an age-adjusted correc-

tion for reporting obtained based on [VOD+20] (making the assumption that the probability

of documentation is independent of comorbidity status after conditioning on age). We

obtained data from the literature on the prevalence of diabetes and hypertension [WCZ+18]

in China by age [XWH+13], as well as a single global estimate of p(hypertension|diabetes)

[TO17]. We assume that these distributions are the same in COVID-19 patients as in the

general population. However, we also conducted a sensitivity analysis to acknowledge

the potential for increased comorbidity prevalence in COVID-19 patients, a scenario where

comorbidities are also correlated to risk factors for transmission. The results (shown in Fig.

S4) do not significantly alter our estimates. Given this information, we use gradient descent

to find a set of parameters β which minimize the mean squared error in the following

marginal consistency constraints, where we use x to denote the random variable of diabetes

status and y to denote the random variable of hypertension status:

pm→d(ai) = ∑
x,y

p(x, y|ai)pm→d(ai, x, y), ∀ai,

pm→d(x) = ∑
ai

p(ai|x)∑
y

p(y|ai, x)pm→d(ai, x, y),
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pm→d(y) = ∑
ai

p(ai|y)∑
x

p(x|ai, y)pm→d(ai, x, y).

The set of estimated parameters are

βage(18− 30) = −8.49,

βage(30− 40) = −7.68,

βage(40− 50) = −7.41,

βage(50− 60) = −6.39,

βage(60− 70) = −5.41,

βage(70− 80) = −4.54,

βage(80− 100) = −4.05,

βdiabetes = 1.22,

βhypertension = 1.58.

The coefficients should be interpreted relative to the baseline -8.49 value for the 18-30

group. For example, the value -7.68 for the 30-40 group indicates that the log-probability of

mortality increases by 0.80 when age is increased from 18-30 to 30-40, holding comordibity

status equal. Over 10 random restarts, the marginal values were always fit to within

numerical tolerance by the same set of parameters (less than 0.1% maximum difference in

the value of a parameter between runs). This suggests that the model parameters are fully

identifiable in this setting.

G.2 Experimental settings

G.2.1 Experimental settings for Hubei

We draw a population of individuals from the age, household, and comorbidity distributions

for China since more specific information is not available for Hubei (though the fraction of
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individuals over 65 is within the typical range for many Chinese provinces [Pen11]). We

simulate a population of 58.5 million individuals, matching the population of the Hubei

province. After the lockdown, all contact frequencies are reduced by δc = 0.993, set to obtain

the number of outside-of-household contacts reported in post-lockdown surveys [ZLL+20].

Note that [ZLL+20] reported a decline in 86.3% for total contacts, but this figure included

within-household contact (which accounted for 94.1% of post-lockdown contact). We also

modeled closure of schools on the lockdown date.

We set the range of the uniform prior distributions as follows. The prior over pinf was

set to contain all values with significant likelihood, with the final range being [0.020, 0.035].

The prior over t0 was set to contain up to 7 days before the first reported case on November

17 [Sou20], and 3 days afterwards (for a set of 10 days total). It is possible that substantial

new backdating of the start of the epidemic could alter our results. Finally, the parameter

dmult captures variation in IFR, which is not precisely known in any location. We start from

age-stratified IFR estimates by Verity et al. [VOD+20]. In our model, these values result in

an overall IFR of approximately 0.4% (lower than the 0.66% estimated by [VOD+20] because

attack rates in our model are higher in younger groups, due to the larger numbers of daily

contacts in younger groups vs older [PCJ17]). We placed a uniform prior over dmult in the

range [1,3], and then conditioned in the posterior on the IFR lying in the range 0.4–0.8%.

Together, this procedure is designed to allow variation by approximately 50% around the

IFR estimated by [VOD+20].

G.2.2 Experimental settings for Lombardy

We simulate a population of 10 million individuals (representing the population of Lom-

bardy) drawn from the Italian distribution of age, household structure, and comorbidity

status. The full demographic information needed to parameterize the simulation was not

available for Lombardy specifically, but available information suggests broadly similar

characteristics (e.g., the median age in Lombardy is 45 [Ita19], comparable to Italy in general

at 46.5 [Fac20]). After the lockdown on March 8, the number of contacts for all age groups
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is reduced to δc times its previous value. The prior for δc was uniform over the interval

[0, 0.1], reflecting a 90-100% reduction in outside of household contact (this interval was set

to contain all values with significant likelihood). We also model closure of all schools on the

lockdown date.

As in Hubei, we set the prior range for pinf to include all values with significant likelihood,

resulting in an interval [0.025, 0.04]. Also as in Hubei, the prior for t0 was set to be uniform

over a range of dates including up to 7 days before the infected travelers reportedly landed

in Milan on January 23 [Car20], and up to 3 days afterwards. We adjusted the way the

parameter dmult was applied to account for the substantially different age composition

of deaths in Italy than in either Hubei or New York City. Specifically, approximately

95% of reported deaths in Italy were among individuals 60 years or older, compared to

approximately 80% in China [fDCP20b] or 73.6% in New York City [oHH20]. One potential

factor which could contribute to disparities in death rates are reports that older individuals

in severe condition may have been less likely to receive care under the triage strategies

adopted in response to overburdened health systems in Italy [Pol20, Mou20]. Accordingly,

instead of scaling fatality rates uniformly across age groups, we calibrated a multiplier for

the fatality rate in the 60+ age group to match the fraction of deaths attributed to that group.

G.2.3 Experimental settings for New York City

We simulate a population of 8.4 million individuals (representing the population of New

York City), sampled in household units from census microdata for New York City.We

model a two-step reduction in contact, consistent with mobility data [Goo20, Una20]. The

official lockdown was instituted on March 23, and we model a reduction in contact by δc

on that date, with δc sampled uniformly from the interval [0, 0.1]. However, mobility data

shows that significant reductions in mobility began the week before the official lockdown,

suggesting preemptive distancing measures by individuals in anticipation of an official

policy. Accordingly, we model contact in all non-household settings as reduced to 67% of

its previous value starting on March 16. This factor was chosen based on the reduction in
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close physical encounters between cell phones represented in Unacast location data during

the week of March 16 [Una20]; we opted to fix this value instead of estimating a separate

parameter in order to avoid increasing the number of free parameters in the model. Our

estimated values for δc suggest that encounter rate data from mobile phones may be a

reasonable proxy for the reduction in physical contacts; our posterior mean estimate for δc

in New York City was 0.97, while Unacast encounter data showed a peak reduction in the

encounter rate of 90-99% across the various boroughs of New York City.

We set the prior range for pinf to be [0.03, 0.07], again set to include all values with

non-negligible likelihood. dmult was given a uniform prior over the range [1, 4], allowing

for but not mandating a higher IFR than Hubei. We handled the starting conditions of

the epidemic differently in New York City than in Lombardy due to reports of multiple

distinct importation events over the course of February [GRHS+20], with modeling studies

suggesting the potential for thousands of cases present by the start of March [CG20]. Instead

of attempting to explicitly model multiple importations, we fixed t0 at February 10 and

placed a uniform prior over the number of infected individuals present on that date, in the

range [5, 500].

G.2.4 Experimental settings for containment policies

We simulate two sets of scenarios modeling the impact of different containment policies.

The first set of scenarios, shown in the main text, simulates a second-wave scenario for

each location. We initialize the simulation to draws from the posterior distribution for said

location. The posterior is over both the population-level model parameters, as well as the

latent individual-level variables (whether each individual has been infected, etc.). Therefore,

the fraction of individuals with (assumed) acquired immunity is also distributed according

to the posterior. When the second-wave scenario starts for Lombardy and New York City,

there is a low but non-zero level of circulation of the virus (approximately 100 actively

infectious individuals). We initialize Hubei to a similar state, with 100 individuals newly

infected at random when the scenario starts. In all locations, the modeled second-wave
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contact reductions are imposed at the start of the scenario when the number of infected

individuals is low; this allows us to demonstrate the impact of the contact reductions as

distinct from the cost of waiting to impose them. In order to simulate physical distancing

by the entire population, we reduce the expected number of contacts Ms
ij between each

pair of age groups i and j in setting s to δsecondMs
ij. Contacts within the household are

unchanged. Our experiments examine δsecond ∈ [0.05, 0.25, 0.5, 0.75, 1]. Physical distancing is

also complemented by salutary sheltering by a single age group. For each age group, we

simulate the impact of 25%, 50%, or 75% of the members of that age group sheltering (in

addition to physical distancing at each level δsecond by the rest of the population). We run

the simulation until the end of 2021 to ensure that the epidemic has had time to run its

course in all scenarios and report the final median number of new infections and deaths for

each scenario.

We also simulate a corresponding set of scenarios where the population begins in

a completely susceptible state. For these simulations, population-level parameters are

sampled from the posterior distribution as in the second-wave scenarios, but the population

is initialized to be completely susceptible (apart from the randomly-sampled initially

infectious individuals, as in the start of our experiments analyzing the first wave for each

location). Contact reductions are imposed immediately, again to disentangle the impact of

the reductions themselves on the number of expected infections from the cost of waiting to

impose the intervention. We simulate the same set of combinations of physical distancing

and salutary sheltering as above.
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Figure G.1: Predictive posterior for Hubei as a function of when the training period ends. Black dashed line:
end of training period. Green line: posterior median. Blue shaded region: 90% credible interval. Pink dots:
training data. Black dots: held-out data. The 90% credible interval of the predictive posterior contains the
held-out data at all points, including when the model is fit using only data from the earliest portion of the
epidemic.
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Figure G.2: Predictive posterior for Lombardy as a function of when the training period ends. Black dashed
line: end of training period. Green line: posterior median. Blue shaded region: 90% credible interval. Pink
dots: training data. Black dots: held-out data. The 90% credible interval of the predictive posterior includes
contains the held-out data at almost all points, including when the model is fit using only data from the earliest
portion of the epidemic. The model over-predicts deaths early in the epidemic, though the timing of the peak is
correctly captured early on. Much of the over-prediction is corrected with additional training data even before
the peak is observed.
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Figure G.3: Predictive posterior for New York City as a function of when the training period ends. Black
dashed line: end of training period. Green line: posterior median. Blue shaded region: 90% credible interval.
Pink dots: training data. Black dots: held-out data. The 90% credible interval of the predictive posterior
includes contains the held-out data at all points, including when the model is fit using only data from the
earliest portion of the epidemic. Using data from only the earliest stage, the model slightly misidentifies the
timing and magnitude of the peak, but these aspects of the prediction substantially improve even without
observing the peak in the training data (c.f. the first vs second figure from the left).
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Figure G.4: Sensitivity analysis to higher prevalence of comorbidities in the population of COVID-19 patients
use to infer the age and comorbidity-specific infection fatality rate. Each plot shows the posterior distribution
over a given quantity (left: the basic reproductive number r0; right: the documentation rate for infections) for
each location. In this scenario, the regression coefficients βage, βdiabetes, βhypertension which produce pm→d(ai, ci)
(the probability of death given age ai and comorbidities ci) are estimated assuming that the prevalence of both
diabetes and hypertension are twice as high in the COVID-19 patients in China for whom case fatality rates are
available as in the general population for China. Our main analysis assumed equal prevalence in COVID-19
patients as in the general population. Our major conclusions are unaltered.

Table G.1: Model parameters

Parameter Description Value and/or source

pm→s(ai , ci) Prob. of progressing from mild to severe given age ai and comorbidities ci Estimated from [VOD+20] (see above)
ps→c(ai , ci) Prob. of progressing from severe to critical given age ai and comorbidities ci As above
pc→d(ai , ci) Prob. of progressing from critical to death given age ai and comorbidities ci As above
ph Prob. of infecting each household member each day Calibrated to match [LEK20]
pinf Prob. of infecting an outside household contact Free parameter
µe→m Log-mean time to progress from exposed to mild (mean incubation period) 1.621 [LGB+20]
σ2

e→m Log-standard deviation time to progress from exposed to mild 0.418 [LGB+20]
λm→s Mean time to progress from mild to severe 7 days [Chi20]
λs→c Mean time to progress from severe to critical 7.5 days (using 14.5 days from onset to mechanical ventilation in [ZYD+20])
λc→d Mean time to progress from critical to death 4.5 days (subtracting λm→s and λs→c from onset-to-death in [ZYD+20])
λisolate Mean time for an individual in the mild state to isolate 4.6 days (time to first medical care [LGW+20])
λm→r Mean time to recovery for an individual in the mild state 14 days [Chi20]
λs→r Mean time to recovery for an individual in the severe state 28− λm→s (midpoint of onset-to-recovery for severe [Chi20])
λc→r Mean time to recovery for an individual in the critical state 35− λm→s − λs→c (midpoint of [Chi20] onset-to-recovery for critical)
α Reduction in infectiousness before symptoms 0.55 [LPC+20] 2

M Contact matrix (for each country) [PCJ17]
t0 First date with at least 5 infected individuals Free parameter

2 This setting for α is likely pessimistic in that Li et al.’s estimate for reduction in transmissibility is for undocumented cases, including asymptomatic
cases, presymptomatic cases, and those with limited symptoms [LPC+20]. Future work should examine the impact of a potentially lower α as better
information on transmissibility in the asymptomatic or presymptomatic state becomes available.

Table G.2: Comparison of Poisson and negative binomial observation models in each location, along with
estimated dispersion parameter σ2

obs for the negative binomial. The negative binomial model is strongly preferred
by AIC in each location. G.2

Location Poisson AIC Negative binomial AIC σ2
obs

Hubei 891.30 670.26 0.337
Lombardy 4741.82 877.97 0.278
New York City 657.49 533.26 0.0641
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Figure G.5: Fraction of the population newly infected in each location in each hypothetical second-wave
scenario. Each row shows the results for the specified location, while each column shows a given level of
physical distancing by the entire population (specified as the percentage of normal contact levels). The x-axis
within each figure gives the fraction of a single age group which adopts salutary sheltering. Each bar represents
a scenario where the given fraction of a single age group adopts salutary sheltering, with the color of the bar
representing the identity of the group (see legend). We find that for all populations, 25% or less contact is
sufficient to suppress the epidemic. At 50% contact, a significant portion of each population becomes infected
(approximately 10-40% depending on the population, which group shelters, and what fraction of that group
shelters). Across populations, sheltering by the 20-40 and 40-60 age groups reduces infections by the largest
amount; sheltering by the 60+ group has only a minor impact.
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Figure G.6: Number of deaths in each population in each hypothetical second-wave scenario. Each row shows
the results for the specified location, while each column shows a given level of physical distancing by the
entire population (specified as the percentage of normal contact levels). The x-axis within each figure gives the
fraction of a single age group which adopts salutary sheltering. Each bar represents a scenario where the given
fraction of a single age group adopts salutary sheltering, with the color of the bar representing the identity of
the group (see legend). In scenarios with 25% or less contact, the outbreak is effectively surpressed (see Figure
G.5) resulting in correspondingly few deaths. At 50% contact, the larger number of infections results in a
larger number of deaths. For Hubei and New York City at 50% contact, deaths are reduced more effectively via
sheltering by the 20-40 or 40-60 groups than by the 60+ group. In Lombardy, sheltering by the 60+ group is
always the most effective at reducing deaths but the margin between the number of deaths under sheltering by
the 60+ group compared to other groups is smaller under 50% contact than under higher contact levels. At
75% or higher contact, this pattern is replicated in Hubei and New York City, where sheltering by the 60+
group has the greatest marginal impact on deaths and the gap between the 60+ and other groups is larger at
100% contact than at 75%.
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Figure G.7: Fraction of the population infected in each population in each hypothetical scenario with a
completely susceptible population. Each row shows the results for the specified location, while each column
shows a given level of physical distancing by the entire population (specified as the percentage of normal contact
levels). The x-axis within each figure gives the fraction of a single age group which adopts salutary sheltering.
Each bar represents a scenario where the given fraction of a single age group adopts salutary sheltering, with
the color of the bar representing the identity of the group (see legend). In contrast to the second-wave scenarios
shown in Figure G.5, 25% contact is not always sufficient to suppress a widespread outbreak. This reflects
two factors. First, the importance of acquired immunity accumulated during the first outbreak in reducing
the effective reproduction number. Second, the potential for the timing of when interventions are applied to
influence the total extent of infections. E.g., it is possible for the total number of eventual infections to be
lower when more people are infected in the first wave than when more stringent control measures are imposed
from the start [HLJA07]. At 50% contact and above, the dynamics become more similar to the second-wave
scenarios, with substantial fractions of each population infected. As in Figure G.5, sheltering by the 20-40
and 40-60 age groups reduces infections by the largest amount; sheltering by the 60+ group has only a minor
impact.
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Figure G.8: Number of deaths in each population in each hypothetical scenario with a completely susceptible
population. Each row shows the results for the specified location, while each column shows a given level of
physical distancing by the entire population (specified as the percentage of normal contact levels). The x-axis
within each figure gives the fraction of a single age group which adopts salutary sheltering. Each bar represents
a scenario where the given fraction of a single age group adopts salutary sheltering, with the color of the bar
representing the identity of the group (see legend). Deaths are limited by contact levels at 25% or lower. As in
the second-wave scenarios for Hubei and New York City, at low levels of contact, sheltering by the 20-40 and
40-60 age groups is more effective at reducing deaths than sheltering by the 60+ group. However, due to the
larger number of infections at a given contact level in the completely-susceptible scenario as compared to the
second-wave scenario, a lower level of overall contact is sometimes needed to realize this effect (25% contact in
New York City instead of 50%). Once contact levels rise to 50%, only Hubei shows greater effectiveness for
sheltering by the 20-40 and 40-60 age groups, and at 75% contact it is more effective for the 60+ age group to
shelter for all populations.
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Table G.3: Infections (in thousands) for a second-wave scenario in Hubei. Each major row heading denotes
the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group which
shelters. The major column headings give the level of contact amongst individuals who do not shelter. The
entry "Total" gives the median number of total infections (in thousands) in each scenario, while "0-59" and
"60+" give the median number of total infections in each segment of the population (under or over 60 years of
age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.2 0.2 0.0 1.0 1.0 0.1 23445.4 20439.3 3006.0 38372.9 33291.2 5081.7 45077.8 38866.5 6211.4

50% 0.2 0.2 0.0 0.6 0.5 0.1 19004.6 16514.2 2490.4 35487.6 30666.7 4820.9 42811.7 36778.4 6033.2

75% 0.2 0.2 0.0 0.6 0.5 0.1 14888.0 12894.7 1993.4 32813.8 28264.0 4549.8 40609.1 34761.2 5847.8

20-40

25% 0.2 0.2 0.0 0.6 0.5 0.1 21084.8 18314.8 2770.0 35816.7 30952.8 4864.0 42720.3 36677.2 6043.2

50% 0.2 0.2 0.0 0.5 0.4 0.1 14269.7 12289.0 1980.7 29955.1 25636.9 4318.2 37719.7 32089.5 5630.2

75% 0.2 0.2 0.0 0.5 0.4 0.1 7348.9 6332.3 1016.7 24057.7 20378.1 3679.6 32381.1 27224.4 5156.7

40-60

25% 0.2 0.2 0.0 0.6 0.5 0.1 22662.4 19752.0 2910.3 36943.6 32022.0 4921.6 43409.4 37362.4 6046.9

50% 0.2 0.2 0.0 0.6 0.6 0.1 17298.6 15009.9 2288.7 32505.8 28035.0 4470.8 39484.8 33801.4 5683.5

75% 0.2 0.2 0.0 0.5 0.4 0.1 11798.9 10240.3 1558.6 28086.9 24099.4 3987.5 35458.4 30183.9 5274.5

60+

25% 0.2 0.2 0.0 0.5 0.4 0.1 25872.8 22997.9 2874.9 39481.7 35000.5 4481.2 45658.2 40315.6 5342.6

50% 0.2 0.2 0.0 0.7 0.7 0.1 23916.2 21538.6 2377.6 37869.2 34094.9 3774.3 44153.0 39680.5 4472.4

75% 0.2 0.2 0.0 0.5 0.4 0.1 22211.0 20213.5 1997.6 36441.5 33227.7 3213.8 42824.5 39048.6 3776.0
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Table G.4: Infections (in thousands) for a second-wave scenario in Lombardy. Each major row heading denotes
the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group which
shelters. The major column headings give the level of contact amongst individuals who do not shelter. The
entry "Total" gives the median number of total infections (in thousands) in each scenario, while "0-59" and
"60+" give the median number of total infections in each segment of the population (under or over 60 years of
age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.7 0.7 0.0 3540.9 2822.6 718.2 5101.1 3899.6 1201.4 6584.6 4945.4 1639.2

50% 0.0 0.0 0.0 0.3 0.3 0.0 2930.2 2319.9 610.3 5159.4 3955.0 1204.4 6234.3 4650.6 1583.6

75% 0.0 0.0 0.0 0.1 0.1 0.0 2409.4 1894.3 515.2 4753.2 3621.3 1132.0 5890.6 4363.8 1526.8

20-40

25% 0.0 0.0 0.0 0.2 0.2 0.0 3376.0 2685.4 690.6 5440.0 4178.6 1261.4 6453.4 4823.1 1630.2

50% 0.0 0.0 0.0 0.2 0.2 0.0 2567.9 2014.8 553.2 4838.4 3671.2 1167.2 5962.5 4398.2 1564.3

75% 0.0 0.0 0.0 0.2 0.1 0.0 1832.9 1417.9 415.0 4218.4 3157.0 1061.4 5460.6 3963.9 1496.6

40-60

25% 0.1 0.1 0.0 0.5 0.5 0.0 3377.9 2688.8 689.1 5353.9 4117.8 1236.2 6320.6 4724.2 1596.3

50% 0.0 0.0 0.0 0.3 0.3 0.0 2578.5 2028.5 550.0 4683.3 3565.5 1117.8 5702.0 4210.4 1491.6

75% 0.0 0.0 0.0 0.1 0.1 0.0 1786.5 1388.5 398.0 3985.8 2997.1 988.7 5065.0 3691.0 1374.0

60+

25% 0.1 0.1 0.0 0.3 0.3 0.0 3800.9 3192.0 608.9 5593.7 4580.7 1013.0 6448.3 5170.1 1278.2

50% 0.1 0.1 0.0 0.4 0.3 0.0 3524.4 3069.0 455.5 5219.7 4484.1 735.6 6022.9 5104.1 918.8

75% 0.0 0.0 0.0 0.3 0.3 0.0 3297.4 2965.2 332.2 4927.6 4406.4 521.2 5664.5 5036.6 627.8
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Table G.5: Infections (in thousands) for a second-wave scenario in New York City. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total infections (in thousands) in each scenario, while "0-59"
and "60+" give the median number of total infections in each segment of the population (under or over 60
years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 12.4 0.1 0.0 2345.5 2020.6 336.1 4028.3 3376.4 678.1 4805.6 3948.3 895.2

50% 0.0 0.0 0.0 0.1 0.1 0.0 1906.2 1587.8 283.6 3718.9 3103.3 639.2 4539.5 3735.0 861.1

75% 0.0 0.0 0.0 0.1 0.0 0.0 1509.2 1194.1 236.9 3451.1 2875.9 607.4 4333.1 3529.0 827.9

20-40

25% 0.0 0.0 0.0 0.1 0.1 0.0 1995.9 1752.2 293.6 3692.0 3072.5 640.8 4511.5 3678.4 869.5

50% 0.0 0.0 0.0 0.2 0.0 0.0 1256.4 1101.8 192.7 2996.8 2477.3 550.3 3906.4 3153.7 796.9

75% 0.0 0.0 0.0 0.0 0.0 0.0 770.0 484.4 90.0 2335.8 1907.2 449.4 3309.8 2605.5 716.1

40-60

25% 0.0 0.0 0.0 3.5 0.1 0.0 2242.3 1966.4 317.5 3841.8 3218.4 649.5 4625.7 3788.1 868.9

50% 0.0 0.0 0.0 8.1 0.1 0.0 1723.8 1510.8 242.8 3329.8 2821.9 573.5 4194.0 3418.0 800.5

75% 0.0 0.0 0.0 0.2 0.0 0.0 1190.7 1068.7 172.2 2890.6 2420.0 494.5 3732.4 3033.8 727.8

60+

25% 0.0 0.0 0.0 15.0 0.2 0.0 2610.8 2350.1 296.3 4098.8 3587.1 547.6 4794.9 4118.3 709.2

50% 0.0 0.0 0.0 7.8 0.2 0.0 2449.3 2277.8 216.4 3885.0 3525.2 395.4 4525.1 4085.0 509.3

75% 0.0 0.0 0.0 17.5 0.2 0.0 2315.0 2222.5 146.3 3706.2 3489.7 261.3 4340.5 4054.0 328.7
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Table G.6: Infections (in thousands) for a fully susceptible population in Hubei. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total infections (in thousands) in each scenario, while "0-59"
and "60+" give the median number of total infections in each segment of the population (under or over 60
years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.0 0.0 0.0 24296.0 21144.8 3151.2 39589.1 34295.6 5290.0 46137.4 39735.7 6400.5

50% 0.0 0.0 0.0 0.0 0.0 0.0 14864.2 12914.7 1925.4 36673.5 31651.5 5021.6 43865.4 37640.4 6226.8

75% 0.0 0.0 0.0 0.0 0.0 0.0 2139.0 1864.0 275.0 33972.3 29221.6 4750.7 41671.1 35624.3 6045.5

20-40

25% 0.0 0.0 0.0 0.0 0.0 0.0 21874.8 18960.6 2911.8 36995.8 31921.2 5074.6 43873.1 37635.5 6237.6

50% 0.0 0.0 0.0 0.0 0.0 0.0 7641.0 6596.3 1042.1 31112.7 26597.1 4515.6 38817.0 32984.3 5833.9

75% 0.0 0.0 0.0 0.0 0.0 0.0 76.2 65.3 10.9 25148.4 21264.5 3884.0 33425.8 28073.7 5352.1

40-60

25% 0.0 0.0 0.0 0.0 0.0 0.0 23800.0 20699.0 3101.1 38133.0 33002.5 5130.0 44565.3 38323.4 6242.3

50% 0.0 0.0 0.0 0.0 0.0 0.0 15228.0 13203.5 2024.6 33698.1 29020.9 4677.9 40584.2 34705.1 5879.5

75% 0.0 0.0 0.0 0.0 0.0 0.0 1167.4 1012.5 154.8 29187.1 25007.1 4182.1 36522.3 31045.5 5474.0

60+

25% 0.0 0.0 0.0 0.0 0.0 0.0 27094.9 24043.3 3055.5 40666.9 35999.9 4668.2 46742.0 41214.4 5525.9

50% 0.0 0.0 0.0 0.0 0.0 0.0 25051.3 22519.2 2532.0 39071.9 35121.5 3948.6 45234.7 40594.2 4640.5

75% 0.0 0.0 0.0 0.0 0.0 0.0 23206.5 21080.0 2125.5 37662.2 34283.1 3379.0 43916.8 39987.2 3928.6
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Table G.7: Infections (in thousands) for a fully susceptible population in Lombardy. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total infections (in thousands) in each scenario, while "0-59"
and "60+" give the median number of total infections in each segment of the population (under or over 60
years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.4 0.3 0.1 5404.4 4367.2 1037.1 7237.4 5651.9 1585.5 8101.9 6172.4 1929.4

50% 0.0 0.0 0.0 0.2 0.2 0.0 4797.6 3860.1 937.5 6789.2 5274.0 1515.2 7730.4 5854.6 1875.8

75% 0.0 0.0 0.0 0.2 0.1 0.0 4232.5 3394.8 837.7 6351.7 4909.7 1442.0 7362.5 5542.4 1820.1

20-40

25% 0.0 0.0 0.0 0.7 0.6 0.1 5281.9 4257.8 1024.1 7102.3 5525.1 1577.2 7991.1 6061.2 1929.9

50% 0.0 0.0 0.0 0.3 0.2 0.1 4459.5 3569.8 889.7 6477.8 4988.6 1489.2 7478.7 5608.5 1870.2

75% 0.0 0.0 0.0 0.1 0.1 0.0 3661.7 2906.6 755.1 5830.4 4439.6 1390.8 6941.8 5135.0 1806.9

40-60

25% 0.0 0.0 0.0 0.4 0.3 0.1 5291.7 4270.3 1021.3 7009.6 5460.7 1548.8 7846.8 5953.5 1893.3

50% 0.0 0.0 0.0 0.2 0.2 0.0 4502.3 3610.8 891.5 6307.4 4878.0 1429.5 7207.5 5413.4 1794.1

75% 0.0 0.0 0.0 0.2 0.2 0.0 3672.9 2927.1 745.8 5611.5 4303.2 1308.4 6558.6 4870.6 1688.0

60+

25% 0.0 0.0 0.0 1.4 1.2 0.2 5666.3 4782.8 883.5 7206.9 5933.0 1273.9 7947.3 6413.2 1534.1

50% 0.0 0.0 0.0 1.2 1.0 0.1 5331.1 4657.6 673.5 6804.6 5851.6 953.1 7486.4 6352.8 1133.6

75% 0.0 0.0 0.0 1.1 1.0 0.1 5069.1 4559.4 509.7 6469.1 5778.6 690.5 7088.0 6293.4 794.6
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Table G.8: Infections (in thousands) for a fully susceptible population in New York City. Each major row
heading denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the
group which shelters. The major column headings give the level of contact amongst individuals who do not
shelter. The entry "Total" gives the median number of total infections (in thousands) in each scenario, while
"0-59" and "60+" give the median number of total infections in each segment of the population (under or over
60 years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.1 0.0 2227.5 1988.4 239.2 5661.5 4875.9 785.8 6883.3 5796.8 1086.7 7433.6 6172.3 1261.7

50% 0.0 0.1 0.0 1142.8 1016.2 126.7 5179.5 4450.8 728.9 6532.9 5487.2 1045.9 7140.4 5907.8 1233.0

75% 0.0 0.1 0.0 1.6 1.5 0.2 4677.4 4010.6 667.0 6178.6 5174.0 1004.8 6833.1 5633.0 1200.5

20-40

25% 0.0 0.1 0.0 2287.6 2045.7 242.0 5385.0 4626.6 758.6 6608.1 5540.0 1068.3 7186.9 5936.3 1251.0

50% 0.0 0.1 0.0 1603.4 1434.4 169.1 4635.2 3958.7 676.6 5944.9 4942.4 1002.8 6603.3 5399.4 1204.2

75% 0.0 0.1 0.0 1075.4 962.8 112.7 3908.1 3323.9 584.3 5247.3 4321.6 925.9 5962.6 4815.2 1147.7

40-60

25% 0.0 0.1 0.0 2583.7 2314.0 269.8 5581.2 4814.0 767.4 6738.8 5672.3 1066.8 7282.6 6036.5 1246.5

50% 0.0 0.1 0.0 2055.8 1845.9 210.0 5049.1 4353.7 695.6 6256.0 5251.8 1004.4 6836.2 5641.0 1195.5

75% 0.0 0.1 0.0 1566.9 1411.0 155.5 4525.0 3904.7 620.4 5769.3 4834.9 934.6 6378.8 5240.0 1139.2

60+

25% 0.0 0.1 0.0 3024.7 2759.0 265.9 5876.7 5218.4 658.5 6932.3 6047.8 884.7 7414.8 6393.5 1021.9

50% 0.0 0.1 0.0 2901.6 2695.9 205.7 5675.6 5177.9 497.9 6679.6 6018.9 661.1 7133.6 6373.8 760.3

75% 0.0 0.1 0.0 2786.6 2632.8 153.9 5475.6 5124.3 351.4 6439.2 5987.3 452.2 6865.7 6353.9 512.3
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Table G.9: Deaths (in thousands) for a second-wave scenario in Hubei. Each major row heading denotes
the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group which
shelters. The major column headings give the level of contact amongst individuals who do not shelter. The
entry "Total" gives the median number of total deaths (in thousands) in each scenario, while "0-59" and "60+"
give the median number of total deaths in each segment of the population (under or over 60 years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.0 0.0 0.0 147.8 29.4 118.1 249.7 50.4 198.2 303.2 61.2 239.6

50% 0.0 0.0 0.0 0.0 0.0 0.0 124.7 24.7 97.7 238.0 48.6 186.7 294.4 60.0 232.2

75% 0.0 0.0 0.0 0.0 0.0 0.0 97.1 19.8 76.9 225.2 45.9 175.9 286.2 58.7 225.4

20-40

25% 0.0 0.0 0.0 0.0 0.0 0.0 133.6 24.9 108.0 236.2 45.4 188.2 290.0 56.3 230.7

50% 0.0 0.0 0.0 0.0 0.0 0.0 92.5 16.0 75.3 205.7 37.7 164.8 269.2 50.5 216.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 44.1 6.8 35.5 173.4 29.9 142.2 242.6 42.9 197.2

40-60

25% 0.0 0.0 0.0 0.0 0.0 0.0 137.7 24.3 113.3 233.9 41.9 191.6 285.3 50.8 231.5

50% 0.0 0.0 0.0 0.0 0.0 0.0 104.9 16.3 87.6 206.7 32.4 170.5 261.5 40.9 217.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 67.8 9.1 57.1 178.5 24.2 151.4 234.9 31.5 202.8

60+

25% 0.0 0.0 0.0 0.0 0.0 0.0 144.9 30.8 113.3 228.2 50.2 176.3 272.0 60.8 209.9

50% 0.0 0.0 0.0 0.0 0.0 0.0 124.3 28.5 95.6 200.9 48.6 151.5 237.9 58.9 177.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 108.7 26.3 81.7 180.1 46.6 131.7 212.9 57.3 154.4
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Table G.10: Deaths (in thousands) for a second-wave scenario in Lombardy. Each major row heading denotes
the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group which
shelters. The major column headings give the level of contact amongst individuals who do not shelter. The
entry "Total" gives the median number of total deaths (in thousands) in each scenario, while "0-59" and "60+"
give the median number of total deaths in each segment of the population (under or over 60 years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.0 0.0 0.0 62.4 3.1 62.6 110.4 4.6 107.8 155.6 5.9 152.2

50% 0.0 0.0 0.0 0.0 0.0 0.0 52.5 2.6 52.3 109.1 4.8 107.6 149.1 5.7 146.3

75% 0.0 0.0 0.0 0.0 0.0 0.0 43.2 2.2 43.8 101.3 4.4 100.7 142.8 5.5 139.4

20-40

25% 0.0 0.0 0.0 0.0 0.0 0.0 61.6 2.8 61.3 117.3 4.7 114.5 155.2 5.6 153.0

50% 0.0 0.0 0.0 0.0 0.0 0.0 48.6 2.2 49.3 107.8 4.1 107.0 149.2 5.2 147.1

75% 0.0 0.0 0.0 0.0 0.0 0.0 36.4 1.6 37.3 98.1 3.7 98.3 142.2 4.8 141.6

40-60

25% 0.0 0.0 0.0 0.0 0.0 0.0 60.5 2.6 60.1 113.5 4.1 112.3 150.7 4.9 148.8

50% 0.0 0.0 0.0 0.0 0.0 0.0 47.6 1.8 48.0 101.7 3.2 100.8 139.1 4.1 138.4

75% 0.0 0.0 0.0 0.0 0.0 0.0 33.4 1.2 34.3 88.6 2.4 88.9 127.6 3.0 127.7

60+

25% 0.0 0.0 0.0 0.0 0.0 0.0 53.2 3.3 52.3 92.4 4.9 89.6 119.3 5.8 115.9

50% 0.0 0.0 0.0 0.0 0.0 0.0 39.4 3.1 37.9 66.4 4.8 63.0 84.8 5.7 79.8

75% 0.0 0.0 0.0 0.0 0.0 0.0 29.6 3.0 27.0 46.8 4.6 42.5 56.9 5.6 51.9
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Table G.11: Deaths (in thousands) for a second-wave scenario in New York City. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total deaths (in thousands) in each scenario, while "0-59" and
"60+" give the median number of total deaths in each segment of the population (under or over 60 years of
age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.3 0.0 0.0 31.0 6.0 24.0 63.6 11.0 51.4 83.5 13.5 70.0

50% 0.0 0.0 0.0 0.0 0.0 0.0 25.4 4.9 19.5 59.4 10.6 47.9 80.4 13.3 67.0

75% 0.0 0.0 0.0 0.0 0.0 0.0 19.9 4.1 17.3 55.7 10.2 44.6 78.1 13.0 63.7

20-40

25% 0.0 0.0 0.0 0.1 0.0 0.0 26.5 4.9 19.6 59.4 9.7 48.6 80.5 12.7 67.4

50% 0.0 0.0 0.0 0.0 0.0 0.0 16.8 2.9 14.9 49.6 8.4 41.3 73.1 11.2 61.4

75% 0.0 0.0 0.0 0.0 0.0 0.0 8.7 1.5 7.2 40.8 6.5 32.8 64.9 9.4 54.5

40-60

25% 0.0 0.0 0.0 0.1 0.0 0.0 28.3 4.9 22.1 58.9 9.0 49.2 79.3 11.1 67.3

50% 0.0 0.0 0.0 0.0 0.0 0.0 21.1 3.1 16.8 50.5 6.7 42.6 71.3 8.6 62.0

75% 0.0 0.0 0.0 0.0 0.0 0.0 13.2 1.8 13.0 42.5 5.1 36.3 63.3 6.3 56.0

60+

25% 0.0 0.0 0.0 0.7 0.0 0.0 29.0 6.8 20.8 53.6 11.2 40.6 68.7 13.6 54.2

50% 0.0 0.0 0.0 0.1 0.0 0.0 23.0 6.5 14.7 41.9 11.0 29.0 52.8 13.5 37.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 17.4 6.2 9.9 31.0 10.6 18.9 38.9 13.6 23.2
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Table G.12: Deaths (in thousands) for a fully susceptible population in Hubei. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total deaths (in thousands) in each scenario, while "0-59" and
"60+" give the median number of total deaths in each segment of the population (under or over 60 years of
age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.0 0.0 0.0 145.4 28.7 116.6 257.3 52.1 205.3 312.0 63.1 249.4

50% 0.0 0.0 0.0 0.0 0.0 0.0 65.8 13.5 51.8 245.3 50.3 195.7 303.3 61.8 241.7

75% 0.0 0.0 0.0 0.0 0.0 0.0 7.4 1.5 5.9 235.5 48.6 186.4 293.5 60.5 233.0

20-40

25% 0.0 0.0 0.0 0.0 0.0 0.0 128.7 24.2 104.9 242.5 47.1 195.5 299.0 58.7 240.7

50% 0.0 0.0 0.0 0.0 0.0 0.0 29.8 5.2 24.6 214.0 39.7 174.3 274.8 51.6 223.2

75% 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 177.5 31.1 146.6 248.8 44.9 204.2

40-60

25% 0.0 0.0 0.0 0.0 0.0 0.0 137.3 24.3 113.1 241.3 43.8 197.6 293.9 53.0 241.4

50% 0.0 0.0 0.0 0.0 0.0 0.0 68.8 10.7 58.1 214.0 34.0 180.1 268.1 42.4 225.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.6 3.6 184.4 25.3 159.0 240.1 32.3 207.9

60+

25% 0.0 0.0 0.0 0.0 0.0 0.0 149.2 31.7 117.4 235.0 52.0 183.1 278.9 62.2 216.6

50% 0.0 0.0 0.0 0.0 0.0 0.0 126.9 29.1 97.7 208.0 50.1 157.7 244.0 60.5 183.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 108.4 26.3 82.1 185.3 48.2 137.5 219.3 59.1 159.4
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Table G.13: Deaths (in thousands) for a fully susceptible population in Lombardy. Each major row heading
denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of the group
which shelters. The major column headings give the level of contact amongst individuals who do not shelter.
The entry "Total" gives the median number of total deaths (in thousands) in each scenario, while "0-59" and
"60+" give the median number of total deaths in each segment of the population (under or over 60 years of
age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 0.0 0.0 0.0 95.1 4.6 90.6 149.2 6.2 143.1 186.0 7.0 178.8

50% 0.0 0.0 0.0 0.0 0.0 0.0 85.0 4.1 81.0 141.7 5.9 135.6 179.5 6.9 172.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 75.2 3.7 71.5 133.8 5.8 127.9 173.0 6.8 166.2

20-40

25% 0.0 0.0 0.0 0.0 0.0 0.0 94.9 4.3 90.6 149.5 5.9 143.5 187.1 6.8 180.3

50% 0.0 0.0 0.0 0.0 0.0 0.0 83.3 3.6 79.7 141.8 5.4 136.4 181.8 6.4 175.3

75% 0.0 0.0 0.0 0.0 0.0 0.0 71.1 2.9 68.1 133.1 4.9 128.3 175.5 6.0 169.7

40-60

25% 0.0 0.0 0.0 0.0 0.0 0.0 93.5 3.9 89.6 145.5 5.3 140.2 181.6 6.1 175.5

50% 0.0 0.0 0.0 0.0 0.0 0.0 80.9 3.0 77.8 132.9 4.3 128.7 171.4 5.0 166.4

75% 0.0 0.0 0.0 0.0 0.0 0.0 66.8 2.2 64.6 121.2 3.4 117.7 159.8 3.9 155.9

60+

25% 0.0 0.0 0.0 0.0 0.0 0.0 80.4 4.7 75.6 118.9 6.2 112.6 145.8 7.0 138.7

50% 0.0 0.0 0.0 0.0 0.0 0.0 60.6 4.5 56.2 87.2 6.0 81.2 105.4 6.9 98.4

75% 0.0 0.0 0.0 0.0 0.0 0.0 45.6 4.4 41.1 62.5 5.9 56.6 72.4 6.7 65.6
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Table G.14: Deaths (in thousands) for a fully susceptible population in New York City. Each major row
heading denotes the age group which adopts salutary sheltering, and the sub-headings denote the fraction of
the group which shelters. The major column headings give the level of contact amongst individuals who do
not shelter. The entry "Total" gives the median number of total deaths (in thousands) in each scenario, while
"0-59" and "60+" give the median number of total deaths in each segment of the population (under or over 60
years of age).

5% contact 25% contact 50% contact 75% contact 100% contact

Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+ Total 0-59 60+

0-19

25% 0.0 0.0 0.0 19.1 4.5 14.4 72.2 14.7 57.0 100.4 18.7 81.7 118.5 20.6 97.9

50% 0.0 0.0 0.0 9.2 2.2 7.0 66.5 14.1 52.6 96.7 18.3 78.5 114.9 20.3 94.6

75% 0.0 0.0 0.0 0.0 0.0 0.0 59.9 13.0 47.5 93.1 18.1 75.0 111.8 20.1 91.7

20-40

25% 0.0 0.0 0.0 20.3 4.4 15.9 69.6 13.7 55.7 98.9 17.8 81.1 115.9 19.5 96.4

50% 0.0 0.0 0.0 13.6 3.1 10.6 60.7 12.0 48.7 91.3 16.0 75.3 111.0 18.4 92.6

75% 0.0 0.0 0.0 8.7 1.9 6.7 52.7 9.9 42.6 83.4 14.3 69.1 104.9 17.0 87.8

40-60

25% 0.0 0.0 0.0 20.8 4.2 16.6 69.1 13.0 56.2 96.5 16.0 80.5 114.2 17.8 96.4

50% 0.0 0.0 0.0 16.5 3.1 13.0 60.8 10.3 50.5 88.6 13.1 75.5 107.0 14.6 92.4

75% 0.0 0.0 0.0 11.2 2.2 9.1 52.9 8.0 44.7 80.0 10.4 69.6 99.0 11.6 87.4

60+

25% 0.0 0.0 0.0 20.9 5.6 15.7 63.7 15.3 48.1 85.3 18.7 66.6 98.5 20.4 78.2

50% 0.0 0.0 0.0 17.4 5.4 12.2 51.1 15.0 36.0 67.8 18.7 49.2 78.2 20.5 57.7

75% 0.0 0.0 0.0 14.0 5.1 9.0 40.5 15.0 25.5 51.5 18.3 33.3 58.5 20.4 38.1
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Appendix H

Appendix to Chapter 13

H.1 Details of experiments

H.1.1 Disease and observation models

To parameterize a setting approximately based on COVID-19, we set the parameter w (which

determines the distribution of the time when an infected individual causes secondary infec-

tions) to be uniform over days 3-10 post-infection. The exact time dynamics of infectiousness

and viral load after SARS-COV-2 infection have not yet been precisely defined, so a uniform

distribution represents a parsimonious choice for a scenario where individuals become

infectious approximately two days before symptom onset and remain infectious for a week,

which is consistent with available evidence [WRC+20].

To model the distribution D, we drew on existing sources. Specifically, we used the

probability of PCR positivity by time since infection reported in [KLL+20] to construct the

PCR distribution. For the serological case, we used the distribution of the time to IgG

seroconversion from symptom onset reported in [IJN+20]. To model the time to symptom

onset, we added a random draw from the log-normal distribution which [LGB+20] report

provides a close fit to the time to symptom onset after SARS-COV-2 infection. For the

uniform underreporting model, we set the distribution of delay after conversion to be

uniform over [0, 5] days.
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H.1.2 Generating the ground truth Rt

The outbreak setting models a population where the spread of the disease is initially

controlled, but where a new outbreak (i.e., R > 1) is possible. In each of these instances,

R0 starts at a uniformly random value in [0.2, 0.8], with γ uniformly random in [5, 15].

Then, at time t, uniformly distributed over days [20, 60], R starts to rise to a value uniformly

distributed in [1.2, 2]. This transition happens linearly over a number of days which

is uniformly distributed in [1,20], simulating either sharper or more gradual transitions.

Finally, we perturb the entire time series with random noise distributed as 0.05 · GP(0,K)
to add small day-to-day fluctuations.

Our second setting, the random trend setting, which models a case where R switches

multiple times between different trends. Specifically, R0 = 0.8. Then, for t ∈ {15, 40, 60, 85},
we draw Rt uniformly at random in [0, 2], and set R100 = R85. The full time series is

piecewise linear between these points. Finally, we add random GP perturbations and a

random γ as in the outbreak model.

H.1.3 Parameter settings for GPRt

For the kernel K, we used a Matern kernel with ν = 3
2 and a length scale of 20 days. These

parameters were not tuned. We used a batch size of b = 800, and optimized µ and Σ using

the Adam optimizer with learning rate 10−3 for 7000 iterations. We also tested batch sizes

b = {100, 400}, a learning rate of {10−2, 5 · 10−2}, and {1000, 2000, 10000} iterations. The

final settings were selected based on the final ELBO value on one randomly generated

instance for the longitudinal setting with d = 14 and 1% of the population tested. This

random instance was not included in the set of 100 instances used to generate the results in

the main paper. On instances for the uniform underreporting model with more than 5% of

the population tested, we observed that the ELBO had not converged after 7000 iterations

and ran 14,000 iterations instead.
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H.1.4 Computational setup for experiments

We ran all experiments on nodes with two Intel 8268 "Cascade Lake" processors and 192 GB

of memory per node. Our program was constrained to use 10 cores and 1 GB of memory.

GPRt finished running within 3 hours. The longest-running baseline was EpiNow, which

finished within 1 hour (drawing 1000 samples using 4 parallel MCMC chains). GPRt was

implemented using PyTorch 1.2 for autodifferentiation. The disease model was simulated

using Numba version 0.48. The random number generator was seeded at the start of each

of the 100 runs using the index of that run (e.g., the 5th run was seeded with “5"). For the

EpiNow baseline, we used the development version of the EpiNow2 package available on

Github as of 9/6/20 [AHH+20]. For the WT and Cori baselines, we used the EpiEstim R

package, version 2.2-3.
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H.2 Additional experimental results

H.2.1 Table 1 with serological testing

H.2.2 Varying d for longitudinal testing

H.2.3 Calibration results
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Figure H.1: Calibration for the outbreak setting, longitudinal sampling, d = 14.
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Figure H.2: Calibration for the outbreak setting, longitudinal sampling, d = 7.
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Figure H.3: Calibration for the outbreak setting, longitudinal sampling, d = 31.
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Figure H.4: Calibration for the random trend setting, longitudinal sampling, d = 14.
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Figure H.5: Calibration for the outbreak setting, cross-sectional sampling.

438



O
ut

br
ea

k
se

tt
in

g

PC
R

Se
ro

lo
gi

ca
l

Lo
ng

it
ud

in
al

0.
5%

1%
2%

5%
0.

5%
1%

2%
5%

W
T

0.
48

1
±

0.
14

7
0.

40
5
±

0.
11

0.
39

5
±

0.
09

47
0.

40
1
±

0.
11

3
0.

44
5
±

0.
15

3
0.

41
5
±

0.
11

7
0.

42
3
±

0.
10

3
0.

43
8
±

0.
14

7
C

or
i

1.
74
±

0.
77

4
1.

18
±

0.
57

3
0.

80
6
±

0.
37

3
0.

54
6
±

0.
21

2
1.

55
±

0.
75

7
0.

97
±

0.
57

7
0.

62
1
±

0.
36

2
0.

45
5
±

0.
19

1
Ep

iN
ow

0.
32

9
±

0.
21

1
0.

26
5
±

0.
14

5
0.

25
±

0.
13

5
0.

26
7
±

0.
16

8
0.

30
8
±

0.
22

6
0.

25
±

0.
17

1
0.

23
2
±

0.
13

6
0.

22
5
±

0.
13

4
G

PR
t

0.
22

8
±

0.
07

13
0.

2
±

0.
05

5
0.

18
3
±

0.
05

79
0.

18
6
±

0.
06

92
0.

23
7
±

0.
08

05
0.

23
2
±

0.
06

67
0.

21
8
±

0.
06

69
0.

21
6
±

0.
07

12

C
ro

ss
-s

ec
ti

on
al

0.
05

%
0.

1%
0.

2%
0.

5%
0.

05
%

0.
1%

0.
2%

0.
5%

W
T

0.
47

4
±

0.
14

9
0.

39
6
±

0.
13

2
0.

36
9
±

0.
10

2
0.

35
8
±

0.
10

1
0.

47
2
±

0.
13

6
0.

48
4
±

0.
13

5
0.

50
1
±

0.
13

2
0.

50
9
±

0.
12

3
C

or
i

1.
3
±

0.
67

6
0.

85
9
±

0.
44

2
0.

55
4
±

0.
18

4
0.

50
2
±

0.
19

7
1.

12
±

0.
51

0.
82

5
±

0.
36

3
0.

66
4
±

0.
24

6
0.

58
4
±

0.
16

7
Ep

iN
ow

0.
30

6
±

0.
19

9
0.

27
7
±

0.
17

4
0.

29
4
±

0.
18

4
0.

30
2
±

0.
20

5
0.

25
±

0.
14

6
0.

29
±

0.
18

1
0.

26
9
±

0.
15

3
0.

29
5
±

0.
17

4
G

PR
t

0.
21

5
±

0.
06

3
0.

17
8
±

0.
05

09
0.

17
7
±

0.
04

9
0.

17
2
±

0.
04

71
0.

26
2
±

0.
09

0.
26

5
±

0.
07

6
0.

24
9
±

0.
07

91
0.

23
8
±

0.
07

32

U
ni

fo
rm

un
de

rr
ep

or
ti

ng
1%

2%
5%

10
%

1%
2%

5%
10

%

W
T

0.
39

5
±

0.
10

5
0.

38
9
±

0.
10

6
0.

37
7
±

0.
11

1
0.

38
2
±

0.
10

4
0.

40
7
±

0.
09

37
0.

42
5
±

0.
11

4
0.

42
9
±

0.
13

3
0.

40
8
±

0.
13

9
C

or
i

0.
89

2
±

0.
55

2
0.

61
4
±

0.
35

5
0.

41
2
±

0.
16

2
0.

38
±

0.
10

8
0.

98
±

0.
55

3
0.

58
7
±

0.
24

5
0.

43
1
±

0.
14

9
0.

38
±

0.
13

9
Ep

iN
ow

0.
31

1
±

0.
19

3
0.

31
±

0.
18

6
0.

35
9
±

0.
23

1
0.

39
4
±

0.
24

5
0.

25
4
±

0.
13

6
0.

21
2
±

0.
12

8
0.

25
1
±

0.
13

9
0.

26
7
±

0.
16

G
PR

t
0.

20
4
±

0.
08

06
0.

22
±

0.
08

78
0.

18
1
±

0.
06

77
0.

18
1
±

0.
04

67
0.

26
±

0.
09

48
0.

25
9
±

0.
08

39
0.

22
2
±

0.
08

65
0.

23
3
±

0.
08

07

R
an

do
m

tr
en

d
se

tt
in

g

PC
R

Se
ro

lo
gi

ca
l

Lo
ng

it
ud

in
al

0.
5%

1%
2%

5%
0.

5%
1%

2%
5%

W
T

0.
42

7
±

0.
14

9
0.

34
5
±

0.
10

1
0.

32
1
±

0.
10

1
0.

29
2
±

0.
10

4
0.

39
8
±

0.
11

8
0.

32
2
±

0.
08

51
0.

28
8
±

0.
09

37
0.

26
±

0.
06

46
C

or
i

1.
28
±

0.
67

8
0.

87
2
±

0.
51

2
0.

62
2
±

0.
32

6
0.

39
2
±

0.
15

9
1.

04
±

0.
66

6
0.

57
±

0.
32

5
0.

35
8
±

0.
15

1
0.

28
±

0.
07

68
Ep

iN
ow

0.
33

2
±

0.
23

3
0.

32
1
±

0.
19

5
0.

33
7
±

0.
23

2
0.

34
9
±

0.
24

4
0.

36
4
±

0.
22

5
0.

29
1
±

0.
20

7
0.

30
4
±

0.
18

5
0.

29
6
±

0.
20

9
G

PR
t

0.
19

9
±

0.
07

45
0.

18
7
±

0.
06

52
0.

18
1
±

0.
05

51
0.

15
7
±

0.
04

76
0.

23
2
±

0.
07

33
0.

21
6
±

0.
07

54
0.

21
3
±

0.
06

99
0.

19
4
±

0.
06

94

C
ro

ss
-s

ec
ti

on
al

0.
05

%
0.

1%
0.

2%
0.

5%
0.

05
%

0.
1%

0.
2%

0.
5%

W
T

0.
39

2
±

0.
12

3
0.

33
5
±

0.
10

7
0.

31
9
±

0.
10

1
0.

28
4
±

0.
09

6
0.

38
1
±

0.
12

8
0.

40
4
±

0.
11

8
0.

40
6
±

0.
13

0.
39

6
±

0.
11

5
C

or
i

0.
94
±

0.
53

5
0.

58
1
±

0.
21

7
0.

47
8
±

0.
15

9
0.

41
1
±

0.
11

7
0.

68
±

0.
24

2
0.

61
±

0.
21

9
0.

51
3
±

0.
13

7
0.

48
5
±

0.
11

7
Ep

iN
ow

0.
35

9
±

0.
20

2
0.

35
6
±

0.
19

1
0.

42
1
±

0.
22

5
0.

38
3
±

0.
21

5
0.

36
2
±

0.
24

2
0.

43
8
±

0.
21

6
0.

43
6
±

0.
26

5
0.

45
6
±

0.
26

4
G

PR
t

0.
19

2
±

0.
06

8
0.

18
2
±

0.
06

41
0.

16
8
±

0.
05

12
0.

14
9
±

0.
04

67
0.

24
2
±

0.
08

89
0.

24
6
±

0.
08

77
0.

23
3
±

0.
09

25
0.

22
1
±

0.
07

88

U
ni

fo
rm

un
de

rr
ep

or
ti

ng
1%

2%
5%

10
%

1%
2%

5%
10

%

W
T

0.
28

5
±

0.
09

5
0.

27
5
±

0.
08

84
0.

26
7
±

0.
10

7
0.

25
9
±

0.
10

9
0.

31
6
±

0.
09

43
0.

3
±

0.
09

17
0.

28
7
±

0.
08

92
0.

28
2
±

0.
09

08
C

or
i

0.
55

8
±

0.
36

8
0.

39
6
±

0.
18

7
0.

32
6
±

0.
12

8
0.

28
1
±

0.
10

9
0.

52
7
±

0.
29

8
0.

38
2
±

0.
20

5
0.

30
3
±

0.
10

8
0.

27
6
±

0.
10

5
Ep

iN
ow

0.
34

8
±

0.
24

4
0.

31
5
±

0.
17

9
0.

38
3
±

0.
23

8
0.

33
6
±

0.
20

1
0.

30
8
±

0.
17

3
0.

35
6
±

0.
23

6
0.

31
8
±

0.
22

0.
34

9
±

0.
23

7
G

PR
t

0.
17

2
±

0.
06

94
0.

17
±

0.
06

32
0.

16
3
±

0.
07

1
0.

18
1
±

0.
06

82
0.

2
±

0.
07

93
0.

21
3
±

0.
08

31
0.

20
6
±

0.
08

48
0.

21
1
±

0.
07

42

Ta
bl

e
H

.1
:

M
ea

n
ab

so
lu

te
er

ro
r

of
ea

ch
m

et
ho

d
av

er
ag

ed
ov

er
in

st
an

ce
s

an
d

ti
m

e
po

in
ts

fo
r

ea
ch

se
tt

in
g,

al
on

g
w

it
h

st
an

da
rd

de
vi

at
io

n
of

th
e

ab
so

lu
te

er
ro

r.
“P

C
R

"
an

d
“S

er
ol

og
ic

al
"

de
no

te
se

tt
in

gs
w

he
re

th
e

ob
se

rv
at

io
ns

ar
e

ge
ne

ra
te

d
by

th
e

re
sp

ec
tiv

e
te

st
in

g
m

et
ho

d.
In

di
vi

du
al

co
lu

m
n

he
ad

in
gs

gi
ve

th
e

pe
rc

en
ta

ge
of

th
e

po
pu

la
tio

n
en

ro
lle

d
in

te
st

in
g.

439



PCR Serological

Longitudinal 0.5% 1% 2% 5% 0.5% 1% 2% 5%

d = 7
WT 0.47 ± 0.143 0.379 ± 0.0888 0.399 ± 0.117 0.379 ± 0.113 0.458 ± 0.129 0.427 ± 0.114 0.41 ± 0.115 0.425 ± 0.128

Cori 1.51 ± 0.774 0.975 ± 0.62 0.655 ± 0.303 0.436 ± 0.149 1.64 ± 0.841 1.02 ± 0.58 0.574 ± 0.255 0.459 ± 0.191
EpiNow 0.296 ± 0.19 0.273 ± 0.147 0.312 ± 0.191 0.288 ± 0.199 0.262 ± 0.155 0.257 ± 0.152 0.244 ± 0.133 0.232 ± 0.137

GPRt 0.201 ± 0.057 0.173 ± 0.0529 0.176 ± 0.0512 0.174 ± 0.0608 0.233 ± 0.073 0.229 ± 0.0726 0.211 ± 0.0669 0.202 ± 0.0712

d = 31
WT 0.6 ± 0.241 0.462 ± 0.149 0.41 ± 0.102 0.426 ± 0.111 0.458 ± 0.152 0.484 ± 0.122 0.481 ± 0.136 0.491 ± 0.145

Cori 2.1 ± 0.795 1.81 ± 0.785 1.19 ± 0.561 0.752 ± 0.384 1.4 ± 0.757 1.13 ± 0.621 0.693 ± 0.3 0.493 ± 0.177
EpiNow 0.326 ± 0.2 0.314 ± 0.202 0.229 ± 0.116 0.263 ± 0.178 0.434 ± 0.309 0.311 ± 0.219 0.253 ± 0.172 0.224 ± 0.183

GPRt 0.22 ± 0.0777 0.213 ± 0.0681 0.192 ± 0.0555 0.189 ± 0.0496 0.274 ± 0.103 0.266 ± 0.0977 0.25 ± 0.0706 0.238 ± 0.0771

Table H.2: Mean absolute error of each method averaged over instances and time points for each setting,
along with standard deviation of the absolute error. “PCR" and “Serological" denote settings where the
observations are generated by the respective testing method. Individual column headings give the percentage of
the population enrolled in testing. These results show the longitudinal testing, with R generated according to
the “outbreak" scenario. Two alternate values of d are shown (7 and 31). Calibration results for these settings
are also shown in the following section.
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Figure H.6: Calibration for the random trend setting, cross-sectional sampling.
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Figure H.7: Calibration for the outbreak setting, uniform underreporting.
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Figure H.8: Calibration for the random trend setting, uniform underreporting.
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