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1 Theoretical analysis of ARISEN

In this section, we present proofs of our guarantees for the performance of ARISEN.

1.1 Preliminaries

We study influence maximization using local information on a graph drawn from the stochastic
block model (SBM). There is a fixed vertex set V , where |V |= n is known to the algorithm.
The vertices are partitioned into communities C1...CL where each Ci ⊆ V . We assume that the
communities are ordered as |C1|≥ |C2|≥ .... ≥ |CL| The set of edges is sampled according to the
following process:

1. Each edge (u, v) where u and v belong to the same community is independently present with
probability pw.

2. Each edge (u, v) where u and v belong to different communities is independently present with
probability pb.

Influence propagates according to the independent cascade model (ICM) where each edge has
equal propagation probability q. This process can be viewed as follows. Each edge in the graph
is independently kept with probability q and discarded with probability 1 − q. Then, a node is
influenced by a given seed set if it lies in the same connected component as a seed. The intuition for
this view (which originated with Kempe et al. [5]) is that flipping all of the process’s random coins
in advance is equivalent to flipping them one at a time, as each node is influenced. The SBM and
ICM can thus been seen as jointly inducing a graph where each within-community edge is present
with probability pwq and each between-community edge is present with probability pbq.

The algorithm has a budget of K nodes which it may select as seeds. We assume without loss of
generality that L ≥ K. If L < K, then all claims follow by analyzing the expected utility on C1...CL
instead of C1...CK . Let fE(S) give the expected number of nodes influenced in the independent
cascade model by the set of nodes S when the set of realized edges are E. Let OPT (E) give the
greatest influence spread using any subset of K nodes when the realized edges are E. Our algorithm
is denoted by A; the set containing its selections given edge set E is denoted by A(E). Note that
since A is randomized, A(E) is itself a random variable. We aim to prove that

E[fE(A(E))] ≥ αE[OPT (E)]

for some approximation ratio α. The expectations range over the randomness in the realization
of E and the decisions of A. Let OPT = E[OPT (E)].

We now state some facts about Erdős-Rényi random graphs which will be useful for our analysis.
The following lemma can be found in any reference on random graphs (see, e.g. Janson, Luczak,
and Rucinski [4]):

Lemma 1. Let G(n, p) be the Erdős-Rényi graph on n vertices with connection probability p.

• If np > log n, then with probability 1− o(1), the graph is connected.

• If 1 < np < log n, then with probability 1 − o(1) the largest connected component has size
(1+o(1))βn, where β is the unique solution to the equation β−1+exp(−βnp) = 0. All other
components have size O(log n).
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• If np < 1, then with probability 1− o(1) the largest connected component has size O(log n).

In our case, each community is internally an Erdős-Rényi random graph with size |Ci| and
connection probability pw. The portion of each community with is internally connected under both
the SBM and the ICM is the giant connected component of an Erdős-Rényi random graph with
size |Ci| and connection probability pwq. With a slight abuse of notation, we use the function β(x)
to refer to the size of the giant connected component induced by the SBM/ICM in a community
with size x. We impose the following:

Assumption 1. pw = O
(

logn
n

)
, and for all for all communities |Ci|, pw > log|Ci|

|Ci| . Intuitively, the

subgraph formed by each community should be connected, but the graph is still relatively sparse.
Our analysis can be extended to the dense case (e.g., pw = Θ(1)), but this is not the situation of
interest for real world networks.

For the influence process, we require

Assumption 2. For all communities |Ci|, pwq|Ci|> 1. This requires that the ICM and SBM jointly
induce a giant connected component in each community, i.e., that an influence cascade can reach
a linear portion of the community.

We also require that no community is too small. The technical condition we require is in terms
of parameters ε and ρ which are introduced in the definition of our algorithm.

Assumption 3. For all communities Ci, |Ci|(ε5ρ) = poly(n). As a corollary, this implies that all
communities have size which scales polynomially (though possibly sublinearly) with n.

1.2 Summary

ARISEN and its motivation

The idea behind ARISEN is to improve on naive sampling by estimating the size of the community
that each random sample lies in, and then choose the largest communities for seeding. Each
community Ci is an Erdős-Rényi graph which has average degree di = |Ci|pw + (n − |Ci|)pb. An
estimate of di, combined with knowledge of pw and pb, yields an estimate of |Ci|. di can be estimated
by simulating a series of random walk through the community to obtain a sampled set of degrees.

Having estimated the size of the community that each sampled node lies in, a natural approach
would be to choose the K samples with the largest estimated size as seed nodes. However, this idea
fails because there is no way to tell (using only local information) whether two sampled nodes lie
in the same community: they might lie in different communities which have very similar average
degree. Hence, simply choosing the samples with the largest estimated size might just seed the
same community K times, which gives an approximation ratio no better than 1

K in the worst case.
The idea that we use to overcome this issue is to independently choose each sample as a seed

with probability inversely proportional to its size. Since large communities are sampled more often,
this inverse weighting “evens out” the sampling bias towards large communities and ensures that,
in expectation, each of the top K communities is seeded exactly once.

For reference, we recall in Algorithm 1 the algorithm that we will prove our guarantees for.
This runs the ARISEN algorithm using only the InitializeWeights routine. As discussed later,
RefineWeights can only improve ARISEN’s influence (though it is not guaranteed to do so).
Algorithm 1 divides the execution of ARISEN into four steps, which we will refer to during our
analysis.
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Algorithm 1 ARISEN (only InitializeWeights)

Require: R, T,B,K, n, pw, pb

Step 1:
1: for i = 1...T do
2: Sample vi uniformly random from G.
3: Hi = R nodes on a random walk from vi.
4: end for
5: for i = 1...T do
6: Form H ′i by discarding the first B nodes of Hi and keeping each remaining node vj w.p.

1
d(vj)

7: d̂ = 1
R

∑
u∈H′i

d(u)

8: Ŝi = d̂−pbn
pw−pb

9: end for

Step 2:
10: wj = n

ŜjT
, j = 1...T .

Step 3:
11: τ = max{Ŝj |

∑
{i|Ŝi≥Ŝj}wi ≥ K}

12: For any j with Ŝj < τ , set wj = 0.

Step 4:

13: Sample u1...uK
iid∼ w

14: return u1...uK

Proof overview: pb = 0

We start out by proving our guarantee for pb = 0, i.e., when the graph consists of disconnected
communities. The idea is to prove that the number of random samples taken in Step 1 is sufficiently
large that every community with size |Ci|≥ ρεn will be sampled (1± ε)T |Ci|n times, and that each

time it is sampled, its estimated size Ŝ will be within a multiplicative ε of the true value |Ci|. This
ensures that the top K communities will be assigned total weight close to 1 in Steps (2)-(3). Each
one is hit with probability approximately 1− (1− 1

K )K ≥ 1− 1/e, and a random sample within the
community lands in the giant connected component induced by the ICM with probability β(|Ci|).
Let βmax = β(|C1|) and βmin = β((1− ε)|CK |). The above intuition motivates the approximation

ratio
β2
min
βmax

(1 − 1/e), which the guarantee in the theorem converges to. The major challenge is to
control the effects of sampling error. While standard concentration bounds suffice to show that the
estimates taken in Step 1 are accurate to within relative error ε, the weights are truncated in Step
3. This has the potential to amplify small errors in sampling, so the bulk of the analysis is spent

in ensuring that the total utility remains close to
β2
min
βmax

(1− 1/e) after Step 3.

Proof overview: pb > 0

There are two major modifications which need to be made to the proof when there are edges
between communities. Here, we outline the obstacles and the steps that we take to resolve them.
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First, Step 1 uses a random walk to collect samples from a given community. These samples
are used to estimate the community’s size in Step 1d. When there are edges between communities,
the random walk may exit the community at some point, in which case the community’s size will
not be accurately estimated. However, we show (via connecting the behavior of the random walk
to the conductance of the community in question) that each random walk stays within its starting
community with probability at least 1− o(1).

Second, our simple bound on OPT (Lemma 2) no longer holds when pb > 0 since OPT may
utilize between-community edges to influence more nodes than just the largest K communities. We
provide a new bound on OPT which accounts for the presence of these edges. The intuition is that
OPT can be bounded by the combined size of the largest K connected components in a subcritical
Erdős-Rényi graph in which each community forms a node. However, formalizing this intuition
requires a more intricate analysis.

1.3 Disconnected communities

We start out by assuming that pb = 0, so that the graph consists of series of disconnected commu-
nities. Later, we generalize the result to account for edges between communities.

We will prove the following guarantee for the performance of this algorithm. The idea is that
ρ controls the “resolution” at which the algorithm works: it competes with the optimal solution
provided that OPT is at least ρnK. ε is a precision parameter which controls the degree of error
caused by sampling.

Theorem 1. Suppose that ρ ≤ µ
n . Then ARISEN can be implemented so that its approximation

ratio is at least
β2
min

βmax
(1− e−(1−ε) − ε− 1

K
− o(1))

using O
((

1
ε5ρ

)
log3

(
1
ερ

)
log6 n

)
queries.

When n and K are large, and ε is small, this approximation guarantee converges to
β2
min
βmax

(1− 1/e).
Proof.

We start out by stating a simple bound on OPT :

Lemma 2. With probability 1− o(1), OPT ≤
∑K

i=1 β(|Ci|)|Ci|.

Proof. The set of nodes influenced by OPT is upper bounded by the total size of the K largest
connected components when each within-community edge is sampled with probability qpw. Via
Lemma 1, with probability 1 − o(1), each community Ci has a giant connected component of size
β(|Ci|)|Ci|, with all other components having size O(log|Ci|). Via Assumption 3, all communities
have size scaling as poly(n), so for any Ci, Cj , the giant connected component in Ci is larger than the
second largest connected component in Cj . Hence, the K largest connected components correspond
to the giant connected components of the K largest communities.

All of our analysis will focus on communities which are sufficiently large, measured in terms of
the parameters ρ and ε. We start out by noting that

Lemma 3.
∑
{Ci| |Ci|≥ερn}|Ci|≥ (1− ε)

∑K
i=1|Ci|.

Proof. From the assumption that ρ ≤ µ
n , at most Kερn ≤ ε

∑K
i=1|Ci| of the nodes in the top K

communities can lie in communities of size below ερn.
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Hence, the algorithm can compete with OPT by performing well on these large communities and
ignoring those size less than ερn. Communities with size below this threshold are not guaranteed
to have been sampled enough times, but even discarding them entirely will have little impact on
the total utility. In what follows, we will assume for convenience that |CK |≥ ερn and then multiply
the final guarantee by (1− ε).

Analysis of Step 1

Step 1 nests two levels of sampling: T nodes are sampled uniformly at random from the entire
graph, and then R samples are taken from the community that each of these nodes lie in. At

this point, we set T = 6
(

1
ε3ρ

)
log 1

ερ . We will first show that, at the outer level, the number of

times that each community is sampled is concentrated well. Then, we will show that the inner
loop accurately estimates the size of each sampled community. The first claim follows from a
straightforward application of the Chernoff bound. The second claim requires a more involved
analysis of our rejection sampling procedure. The following two lemmas formalize these guarantees
on the output of Step 1. Their proofs are given in Section 1.4.

Lemma 4. Let Xi
j be the indicator variable for the event that sample j lands in community Ci.

With probability at least 1− 2ε,

(1− ε)T |Ci|
n
≤

T∑
j=1

Xj
i ≤ (1 + ε)T

|Ci|
n

holds for all i with |Ci|≥ ερn.

Lemma 5. There are settings R = O
(

1
ε2

log2
(
T
ε

)
log6 n

)
and B = O(log3/2 n) such that, given

R random walk samples from a community C, the estimated size d̂ satisfies (1 − 2ε)pw|C|≤ d̂ ≤
(1 + 2ε)pw|C| with probability at least 1− 2ε

T − o(1)

Corollary 1. With probability at least 1− 2ε− o(1), (1− 2ε)|Ci|≤ Ŝi ≤ (1 + 2ε)|Ci| holds for every
i = 1...T .

Proof. We apply Lemma 5 to each of the T iterations. Since (1− 2ε)pw|C|≤ d̂ ≤ (1 + 2ε)pw|C|, we
know that for Ŝ = 1

pw
d̂ (1 − 2ε)|C|≤ d̂ ≤ (1 + 2ε)|C|. To conclude, we take union bound over the

failure probabilities at each iteration.

We emphasize that Lemma 5 applies to all communities that are sampled, not just those which
have size at least ερn. However, Lemma 4 only applies to communities with size at least ερn. That
is, each sampled community’s size estimate is accurate, but small communities may not be reliably
sampled. Note that the total query cost is R · T , which (given these settings for R and T ), implies
the bound in the theorem statement.

At this point in the analysis, we assume that we proceed with an ε′ = ε
2 , so that each Ŝi satisfies

(1− ε)|Ci|≤ Ŝi ≤ (1 + ε)|Ci|. This is purely for convenience; at the end of the proof we add up the
total constant that ε should be divided by to obtain the guarantee in the theorem statement.

Analysis of Step 2

We now analyze the probability that each community in the top K (with size at least ερn) is
seeded based on the above estimates. Consider any community Ci ∈ {C1...CK} with |Ci|≥ ερn.
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Ci is seeded if any of the sampled nodes from it are chosen in Step 4, and the probability of this
event is determined by the total amount of weight which is allocated to nodes in Ci. In this step,
we show that the total weight assigned to each of the top K communities is close to 1. Formally,

Lemma 6. For any community Ci, let w(Ci) be the total weight assigned to Ci. Suppose that Ci
satisfies

• (1− ε)T |Ci|n ≤
∑T

j=1X
j
i ≤ (1 + ε)T |Ci|n

• (1− ε)|Ci|≤ Ŝi ≤ (1 + ε)|Ci| each time Ci is sampled.

Then, 1− 2ε ≤ w(Ci) ≤ 1 + 2ε.

Proof. We have

w(Ci) =

T∑
j=1

1{j ∈ Ci}wj

=
T∑
j=1

1{j ∈ Ci}
n

ŜjT

≥ (1− ε)T |Ci|
n

n

(1 + ε)|Ci|T

=
1− ε
1 + ε

≥ 1− 2ε

A similar argument shows that w(Ci) ≤ (1 + 2ε) also holds.

Corollary 2. With probability at least 1 − 4ε − o(1), 1 − 2ε ≤ w(Ci) ≤ 1 + 2ε holds for every
community Ci sampled during Step 1 with Ŝi > 0.

Proof. Via Lemma 4 and Corollary 1 (and union bound), we can apply Lemma 6 to each community
sampled in Step 1 with total probability at least 1− 4ε.

Analysis of Steps 3 and 4

Now, we need to analyze the impact of the truncation in Step 3. If the size of every community
were perfectly estimated, then this step would set the weight of each community with size less than
CK to zero, leaving only C1...CK to be seeded in Step 4. The following analysis controls the loss
that can be suffered due to sampling errors.

For instance, it is possible that CK could have “borderline” size arbitrarily close to |CK+1|, in
which case much of this weight may be truncated in favor of samples from CK+1. For this to occur,
a sample from CK+1 must have estimated size higher than a sample from CK . But since the size of
each sampled community is well-estimated, this implies that |CK+1| is actually very close to |CK |,
so not much is lost.

We now formalize this intuition. Recall that Step 3 calculates a threshold τ : the algorithm
keeps all samples j where Ŝj ≥ τ and discards those with Ŝj < τ by setting wj = 0. Let w(Ci)
denote the total weight of community Ci before truncation and wT (Ci) denote its total weight after
truncation. We define four sets of communities
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• Small = {Ci| |Ci|< (1−ε)|CK |}. These are communities we would like to show never displace
samples from communities in the other three sets.

• A = {Ci| 1−ε
1+ε |CK |≤ |Ci|< |CK |}. These are communities with size less than |CK |, but which

we might not be able to detect and truncate due to sampling errors.

• B = {Ci| |CK |≤ |Ci|≤ 1+ε
1−ε |CK |}. These are communities with size at least |CK |, but which

are small enough that they might be confused with communities in A.

• Large = {Ci| |Ci|> 1+ε
1−ε |CK |}. These are communities we would like to show are never

truncated.

First, we show that communities in Small and Large behave well under truncation, in the
sense that no samples from Large are truncated and no samples from Small displace samples from
B ∪ Large. In what follows we condition on the events in Corollaries 1 and 2.

Lemma 7. wT satisfies the following conditions:

• wT (Small) ≤ K − wT (B)− wT (Large)

• wT (Large) = w(Large) ≤ |Large|+2ε|Large|

Proof. If a community Ci is in Small, then the size estimated for each of its samples satisfies

Ŝ ≤ (1 + ε)|Ci|< (1 + ε)

(
1− ε
1 + ε

)
|CK |≤ (1− ε)|CK |

Hence, samples from communities in Small will always have estimated size less than every
sample from B∪Large, from which the first claim follows. The same logic shows that every sample
from communities in Large has estimated size higher than every sample from CK . This implies
(via

∑K−1
i=1 w(Ci) ≤ (K − 1) + 2ε(K − 1)) that each sample’s estimated size lies above τ , proving

the second claim.

We recall here that choosing a random sample from a community Ci has probability β(|Ci|) of
hitting the giant connected component induced by the ICM, in which case it influences a fraction
β(|Ci|) of the nodes in the community. Hence, the total expected utility is

∑
Ci

β(|Ci|)2Pr[Ci is seeded]|Ci| ≥
∑

Ci∈A∪B∪Large
β(|Ci|)2Pr[Ci is seeded]|Ci|

We refer to the value of the above summation restricted to a particular set of communities as
the total utility obtained from that set. We now proceed to bound the total utility obtained from
A ∪B, and then the total utility obtained from Large.

Lemma 8. The total utility obtained from A ∪B is at least

β ((1− 2ε)|CK |)2 (|B|−4εK − 1) |CK |
(

1− e−(1−2ε)
)
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Proof. Via Lemma 7, at least K − |Large|−2ε|Large|= |B|−2ε|Large| weight must be allocated to
communities in A and B. Hence, the total expected utility obtained from these communities is

∑
Ci∈A∪B

β(|Ci|)2Pr[Ci is seeded]|Ci| =
∑

Ci∈A∪B
β(|Ci|)2

(
1−

(
1− w(Ci)

K

)K)
|Ci|

≥
∑

Ci∈A∪B
β(|Ci|)2

(
1− e−w(Ci)

)
|Ci|

≥ β
((

1− ε
1 + ε

)
|CK |

)2(1− ε
1 + ε

)
|CK |

∑
Ci∈A∪B

1− e−w(Ci)

≥ β ((1− 2ε)|CK |)2 (1− 2ε) |CK |
∑

Ci∈A∪B
1− e−w(Ci). (1)

Given the above constraints on the total amount of weight allocated to each community, the
value of Equation (1) is at least the value of the following optimization problem:

minβ ((1− 2ε)|CK |)2 (1− 2ε) |CK |
∑

Ci∈A∪B
1− e−w(Ci)

w(Ci) ≤ 1 + 2ε ∀Ci ∈ A ∪B∑
Ci∈A∪B

w(Ci) ≥ |B|−2ε|Large|

Here the first constraint is due to Corollary 2, and the second is due to the argument at the
start of this lemma. Let Q be the optimal value of the above optimization problem. The objective
is the sum of identical concave functions in each variable w(Ci). Hence, the minimum is achieved
when as many of the w(Ci) as possible are set to 1 + 2ε, with one community receiving the leftover

weight. Specifically,
⌊
|B|−2ε|Large|

1+2ε

⌋
communities receive weight 1 + 2ε, and one community receives

weight (|B|−2ε|Large|) − (1 + 2ε)
⌊
|B|−2ε|Large|

1+2ε

⌋
. We can lower bound Q by only considering the

communities that received weight 1 + 2ε, which gives (via some straightforward algebra):

Q ≥
⌊
|B|−2ε|Large|

1 + 2ε

⌋
· β ((1− 2ε)|CK |)2 (1− 2ε) |CK |

(
1− e−(1+2ε)

)
≥
(
|B|−2ε|Large|

1 + 2ε
− 1

)
· β ((1− 2ε)|CK |)2 (1− 2ε) |CK |

(
1− e−(1+2ε)

)
≥ ((1− 2ε)(|B|−2ε|Large|)− 1) · β ((1− 2ε)|CK |)2 (1− 2ε) |CK |

(
1− e−(1+2ε)

)
≥
(
|B|−2ε|Large|−2ε|B|+4ε2|Large|−1

)
· β ((1− 2ε)|CK |)2 (1− 2ε) |CK |

(
1− e−(1+2ε)

)
≥ (|B|−4εK − 1) · β ((1− 2ε)|CK |)2 |CK |

(
1− e−(1+2ε)

)
≥ (|B|−4εK − 1) · β ((1− 2ε)|CK |)2 |CK |

(
1− e−(1−2ε)

)
.

Lemma 9. The total utility obtained from Large is at least
∑

Ci∈Large β(|Ci|)2|Ci|
(
1− e−(1−2ε)

)
.
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Proof. Follows directly from Lemma 7, which implies that every Ci ∈ Large satisfies w(Ci) ≥ 1−2ε.
As a result, Pr[Ci is seeded] ≥ 1− e−(1−2ε).

After some more algebra, this leads to our final bound on the total utility. Recall that we
defined βmin = β((1− ε)|CK |)

Lemma 10. The total utility over all communities is at least(
1− 6ε− 1

K

)(
1− e−(1−2ε)

)
β2
min

K∑
i=1

|Ci|

.

Proof.∑
Ci∈A∪B∪Large

β(|Ci|)2Pr[Ci is seeded]|Ci|

≥
∑
Ci∈B

β((1− 2ε)|CK |)2|CK |
(

1− e−(1−2ε)
)

+
∑

Ci∈Large
β(|Ci|)2|Ci|

(
1− e−(1−2ε)

)
−

β((1− 2ε)|CK |)2 (4εK + 1) |CK |
(

1− e−(1−2ε)
)

≥ (1− 2ε)

( ∑
Ci∈B

β((1− 4ε)|Ci|)2|Ci|
(

1− e−(1−2ε)
)

+
∑

Ci∈Large
β(|Ci|)2|Ci|

(
1− e−(1−2ε)

)

− β((1− 2ε)|CK |)2 (4εK + 1) |CK |
(

1− e−(1−2ε)
))

≥ (1− 2ε)

(
K∑
i=1

β((1− 4ε)|Ci|)2|Ci|
(

1− e−(1−2ε)
)
− (4εK + 1)β((1− 4ε)|CK |)2|CK |

(
1− e−(1−2ε)

))

≥ (1− 2ε)

(
K∑
i=1

β((1− 4ε)|Ci|)2|Ci|
(

1− e−(1−2ε)
)
− (4εK + 1)

1

K

K∑
i=1

β((1− 4ε)|Ci|)2|Ci|
(

1− e−(1−2ε)
))

= (1− 2ε)

(
1− 4ε− 1

K

)(
1− e−(1−2ε)

) K∑
i=1

β((1− 4ε)|Ci|)2|Ci|

≥
(

1− 6ε− 1

K

)(
1− e−(1−2ε)

) K∑
i=1

β((1− 4ε)|Ci|)2|Ci|

≥
(

1− 6ε− 1

K

)(
1− e−(1−2ε)

)
β((1− 4ε)|CK |)2

K∑
i=1

|Ci|

At this point, we can pretend that β((1−4ε)|CK |) ≥ βmin since we end up running the algorithm
with a much smaller value of ε in any case. Details can be found at the conclusion of the proof.

By Lemma 2, OPT ≤
∑K

i=1 β(Ci)|Ci|. Plugging in the bound from Lemma 10, we have (modulo
the events we conditioned on earlier) the approximation ratio

(
1− 6ε− 1

K

)(
1− e−(1−2ε)

)
β2
min

∑K
i=1|Ci|∑K

i=1 β(Ci)|Ci|
. (2)

10



In the worst case, we can lower bound this as follows. Recall that we defined βmax = β(|C1|).
We can define βmin using (1− ε)|CK | because below we run the algorithm with a smaller value of
ε in any case. We have

β2
min

∑K
i=1|Ci|∑K

i=1 β(Ci)|Ci|
≥
∑K

i=1 β
2
min|Ci|∑K

i=1 βmax|Ci|

=
β2
min

βmax
.

Now we are just a few details away from the final stated bound. First, the events in Corollary
2 hold with probability 1 − 4ε − o(1). Second, the analysis used that the connected component
induced by the ICM in each community has size β, which holds with probability 1−o(1). Via union
bound, these events all occur with probability at least 1− 4ε− o(1). Second, we assume that all of
the top K communities had size at least ερn. In fact, the “sufficiently large” communities that the
algorithm obtains utility from have total size at least (1− ε)

∑K
i=1|Ci| (via Lemma 3). Accounting

for these facts, we have

E[fE(A(E))] ≥ (1− 4ε− o(1))(1− ε)β
2
min

βmax

(
1− 6ε− 1

K

)(
1− e−(1−2ε)

)
OPT

≥ β2
min

βmax

(
1− 11ε− 1

K
− o(1)

)(
1− e−(1−2ε)

)
OPT.

Finally, we note that we replaced ε by ε′ = ε
2 earlier in the proof. Thus, running the algorithm

with ε′′ = ε
22 yields the stated bound.

1.4 Concentration lemmas

We now prove that the various estimates that the algorithm takes in Step 1 are sufficiently accurate.
We make frequent use of the Chernoff bound:

Lemma 11 ([6]). Let X1...XN be independent binary random variables. Let X =
∑N

i=1Xi and
µ = E[X].

• For 0 < δ < 1, Pr[|X − µ|≥ δµ] ≤ 2e−
δ2µ
3 .

• For δ > 1, Pr[X ≥ (1 + δ)µ] ≤ e−
δµ
3

We now proceed to prove Lemmas 4 and 5.

Proof of Lemma 4. Note that E[
∑T

j=1X
i
j ] = T |Ci|n Via the Chernoff bound, we have that

Pr

∣∣∣∣∣∣
T∑
j=1

Xi
j − T

|Ci|
n

∣∣∣∣∣∣ > εT
|Ci|
n

 ≤ 2 exp

(
−1

3
ε2T
|Ci|
n

)

≤ 2 exp

(
−1

3
ε2Tερ

)
(|Ci|≥ ερn)

≤ 2 exp

(
−2 log

1

ερ

)
≤ 2(ρε)2.

11



There are at most 1
ερ communities of size at least ερn. By union bound, concentration holds for

each of them with probability at least 1− 2ερ ≥ 1− 2ε.

Proof of Lemma 5. We recall the lemma statement: There are settings R = O
(

1
ε2

log2
(
T
ε

)
log6 n

)
and B = O(log3/2 n) such that, given R random walk samples from a community C, the estimated
size Ŝ satisfies (1− 2ε)|C|≤ Ŝ ≤ (1 + 2ε)|C| with probability at least 1− 2ε

T − o(1)
Our estimator does the following:

1. Take R steps according to a random walk, discarding a burn in portion at the start while the
walk mixes.

2. Keep each sample i with probability 1
di

3. Estimate the average degree as the mean of the degrees of the samples that were kept.

It will be convenient to work with a graph that is guaranteed not to have any nodes of degree
significantly higher than the expected degree. We show that with high probability, the maximum
degree in the graph is O(log2 n), and condition on this holding for all nodes in the rest of the proof.

Lemma 12. Let dmax be the largest degree in the graph. With probability at least 1 − 1
n , dmax =

O(log2 n).

Proof. Fix a node v. dv is the sum of |Ci| indicator random variables which give the presence or
absence of each possible edge. Let Yvu be the indicator random variable for the presence of the
edge (v, u). dv =

∑
u∈Ci Yvu. Note that by Assumption 1 E[dv] ≥ log|Ci| ≥ 1. Also by Assumption

1, pw = O
(

logn
n

)
, so E[dv] = O(log n) holds as well. Since the Yuv are independent, we can use the

Chernoff bound to argue

Pr[dv ≥ (1 + 6 log n)E[du]] ≤ exp

(
−1

3
6 log nE[du]

)
≤ exp (−2 log n)

≤ 1

n2

Taking union bound over n vertices, with probability 1− 1
n , every vertex has degree at most a

factor 1 + 6 log n ≤ 7 log n greater than its expectation. Since E[dv] = O(log n) for all vertices, we
conclude that dv = O(log2 n) holds for all vertices with the stated probability.

We now introduce some notation dealing with Markov chains. Suppose a Markov chain has
transition matrix P . All Markov chains we consider will have a unique stationary distribution. Let
this distribution be π. The total variational distance between probability distributions p and q is

dTV (p, q) = sup
x
|p(x)− q(x)|.

The mixing time of a chain is the maximum time needed for the chain to converge to its
stationary distribution:

12



tmix(ε) = min{t | sup
x
dTV (1xP

t, π) ≤ ε}

tmix := tmix

(
1

4

)
The spectral gap of the chain is γ = 1−λ2, where λ2 is the second eigenvalue of P . It is related

to tmix as follows:

Lemma 13 (Paulin [7] Proposition 3.3). γ ≥ 1
1+tmix/log 2

The random walk carried out by ARISEN is a Markov chain whose state space is the vertices of
the community Ci. Ci is an Erdős-Rényi graph with at most n nodes. We use the following bound
on the spectral gap of this walk:

Lemma 14 (Hoffman et al. [3]). For an Erdős-Rényi graph with average degree davg >
1
2 log n,

with probability 1− o(1), γ = Ω
(

1√
d

)
.

Since we have by Assumption 1 that log|Ci|< davg = O(log n), we conclude that γ = Ω
(

1√
logn

)
.

The stationary distribution of a random walk on an undirected graph places probability dv∑
u du

probability on node v, i.e., the probability is proportional to each node’s degree. This is a problem
when we wish to estimate the average degree, because our samples will be biased towards high
degree nodes. The solution we use is rejection sampling (step 2), which “unbiases” the samples by
disproportionately rejecting high degree nodes.

To prove concentration for our estimator, we define a second Markov chain which builds in the
rejection step. Let the transition matrix of this new chain be P ′. The new chain is defined by
applying the following procedure to the random walk chain. Given that the new chain is at a node
v, it proposes to take a step according to the normal random walk. Say that this step leads to node
u. With probability 1

du
, this move is accepted (the next state of the chain is u). Otherwise, the

new chain takes another random walk step from u and applies the same acceptance condition to
the new node, continuing until some node is accepted. This new node is the next state of the chain.
The distribution of a set of samples from this chain is, by construction, the same as the distribution
of a set of samples produced by step 1 and accepted by step 2. This characterization lets us see the
intuitive fact that the new chain’s stationary distribution π′ is uniform over the vertices: we would
first sample a node with probability proportional to its degree, and then accept it with probability
inversely proportional to its degree.

We will apply concentration bounds to the the new random walk. We use the following
Bernstein-style concentration bound for the sum of a function of a Markov chain.

Lemma 15 (Paulin [7]) Theorem 3.3). Let X1...Xr be a stationary reversible Markov chain over
state space Ω with spectral gap γ and stationary distribution π. Let g ∈ L2(π), with |g(x)−Eπ[g]|≤ C
for every x ∈ Ω. Then we have

Prπ

[∣∣∣∣∣1r
r∑
i=1

g(Xi)− E
π

[g(x)]

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− rε2γ

4Varπ(g) + 10εC

)
To account for the fact that the chain does not start at stationarity, we can use a burn in time

of tmix steps, which gives the following bound:
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Lemma 16 (Paulin [7]) Proposition 3.10). Suppose that the chain starts from distribution q and
we discard the first t0 samples. Let P be the transition matrix. Then

Prq

[∣∣∣∣∣ 1

r − t0

r∑
i=t0+1

g(Xi)− E
π

[g(x)]

∣∣∣∣∣ ≥ ε
]
≤ Prπ

[∣∣∣∣∣ 1

r − t0

r∑
i=t0+1

g(Xi)− E
π

[g(x)]

∣∣∣∣∣ ≥ ε
]

+ dTV (qP t0 , π).

Let π be the stationary distribution of the original chain and π′ be the stationary distribution
of the new chain. Let t′mix be the mixing time of the new chain. We formalize that the second
chain does not take much longer to mix than the first:

Lemma 17. t′mix(ε) ≤ 4 log2

(
n
ε

)
tmix = O

(
log3/2 n

ε

)
.

Proof. Suppose that we have run the first chain for t steps, resulting in a distribution q over the
vertices. We simulate the second chain from the first, giving a distribution q′. Suppose that
dTV (q, π) ≤ δ for some δ. We would like to show that dTV (q′, π′) ≤ ε. Let E(Ci) give the set of
edges within community Ci. For any node v, we have |q(v) − π(v)|= |q(v) − dv

2|E(Ci)| |≤ δ. Thus,

| q(v)
dv
− 1

2|E(C)| |≤
δ
dv
≤ δ. We know that q′(v) ∝ q(v)

dv
since the RHS is just the probability that a node

is both proposed by the first chain and then accepted. Similarly, we know that 1
2|E(Ci)| ∝ π

′(v) since

π′ is uniform. From here, the proof is mostly just algebra. Let Z1 =
∑

v
1

2|E(Ci)| and Z2 =
∑

v
q(v)
dv

be

normalization constants such that q′(v) = q(v)
Z1dv

and π′(v) = 1
Z22|E(Ci)| . We know that |Z1−Z2|≤ δn

via the triangle inequality combined with | q(v)
dv
− 1

2|E(C)| |≤ δ ∀v. Further,
∣∣∣ 1
Z1
− 1

Z2

∣∣∣ =
∣∣∣Z1−Z2
Z1Z2

∣∣∣.
We can bound Z1 =

∑
v
q(v)
dv
≥ 1

n

∑
v q(v) = 1

n and Z2 =
∑

v
1

2|E(Ci)| ≥
|Ci|

2|E(Ci)| ≥
1

2n . Thus,∣∣∣ 1
Z1
− 1

Z2

∣∣∣ ≤ 2n2|Z1−Z2|≤ 2n3δ. Using this, we show how to bound q(v)
Z1dv
− 1
Z22|E(Ci)| (the argument

for 1
Z22|E(Ci)| −

q(v)
Z1dv

is analogous). We have q(v)
Z1dv

− 1
Z22|E(Ci)| ≤ 2δ2n3 + q(v)

Z2dv
− 1

Z12|E(Ci)| . A few

lines of calculation yield that q(v)
Z2dv

− 1
Z12|E(Ci)| ≤ 2n2(2δ+ nδ2). In the end, we get the final bound

that
∣∣∣ q(v)
Z1dv

− 1
Z22|E(Ci)|

∣∣∣ ≤ 2δ2n3 + 2n2(2δ + nδ2) ≤ 7δn3. Thus, it suffices to have δ ≤ ε
7n3 . It is

well known [6] that running any Markov chain for ctmix steps results in a distribution with total
variational distance at most 2−c from the stationary distribution. Hence, we can take 4tmix log2

n
ε

steps and obtain δ ≤ ε4

n4 <
ε

7n3 . Thus, t′mix(ε) ≤ 4 log2

(
n
ε

)
tmix.

Let γ′ be the spectral gap of the transition matrix of the new chain. From Lemma 13, the above

implies that γ′ = Ω
(

log−
3
2 n
)

.

After running the random walk for R steps, let R′ be the number of steps taken in the new
chain (the number of samples accepted by step 2). This is our effective sample size.

Lemma 18. With probability at least 1− ε, R′ = Ω
(

1
log 1

ε
log2 n

R
)

Proof. We know that each v satisfies dv ≤ O(log2 n). Thus, the number of accepted samples
stochastically dominates a Binomial random variable with R trials and success probability 1

O(log2 n)
.

Let µ be the expected number of successes and X be the actual number of successes. Via the
Chernoff bound, with probability at least 1− ε, we have that

X ≥

1−

√
2 log 1

ε

µ

µ.
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After some algebra, we can see that if we have µ = 2 log 1
εR
′, then this implies X ≥ R′ (provided

R′ ≥ 4). Since µ = Ω
(

R
log2 n

)
, we obtain the statement in the lemma.

Conditioning on having sufficiently large R′ per Lemma 18, we can use Lemma 16 to obtain the
following upper bound on the number of random walk steps needed to obtain the claimed failure
probability:

Lemma 19. Let davg be the average degree of Ci. In order to have

Pr

[∣∣∣∣∣ 1

R′ − tmix

R′∑
i=tmix+1

d(vi)− davg

∣∣∣∣∣ ≥ ε
]
≤ 2ε

it suffices to take R = O
(

1
ε2

log2
(

1
ε

)
log6 n

)
random walk steps.

Proof. We will use Lemma 16 applied to the new chain with g(v) = dv since Eπ′ [dv] = davg. In
order to do so, we need bounds on both the highest possible value of dv and on V arπ′(dv). Lemma
12 supplies that dmax = O(log2 n) is an upper bound on the maximum possible value (having
conditioned on this holding for all nodes). For the variance, we note that dv is a binomial random

variable with variance np(1−p) = O
(
n logn

n

(
1− logn

n

))
= O(log n). Conditioning on its maximum

value can only reduce its variance.
Via Lemma 14, the dTV term in Lemma 16 is at most ε after the burn-in period. Hence, we

can bound the failure probability for samples drawn from the stationary distribution using Lemma
15. We consider two cases

Case 1: 4V arπ′(dv) ≥ 10εdmax. In this case, the failure probability is at most

2 exp

(
− R′ε2γ′

8V arπ(dv)

)
≤ 2 exp

(
−Ω

(
ε2γ′R

V arπ′(dv) log 1
ε log2 n

))

≤ 2 exp

(
−Ω

(
ε2R

log 1
ε log9/2 n

))

So, there is a constant c1 such that taking R = c1
1
ε2

log2
(
T
ε

)
log5 n makes the failure probability

at most 2ε
T .

Case 2: 10εdmax > 4V arπ′(dv). In this case, the failure probability is at most

2 exp

(
− R′ε2γ′

20εdmax

)
≤ 2 exp

(
−Ω

(
εγ′R

dmax log 1
ε log2 n

))

≤ 2 exp

(
−Ω

(
εR

log 1
ε log11/2 n

))

So, there is a constant c2 such that taking R = c2
1
ε log2

(
T
ε

)
log6 n makes the failure probability

at most 2ε
T . Between the two cases, we conclude that taking R = O

(
1
ε2

log2
(
T
ε

)
log6 n

)
suffices as
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claimed. Since the burn-in time is O(log3/2 n) per Lemma 14, the additional O(log3/2 n) steps at
the start are absorbed into this figure.

With this proof of this lemma completed, Lemma 5 immediately follows.

This completes the proof of Theorem 1.

1.5 General case: pb > 0

We now generalize the analysis of the above algorithm to handle edges between communities. We
focus on the case where pb is sufficiently small that the communities in the graph do not themselves
form a giant connected component under the ICM. While it is clearly possible to prove guarantees
for the case where pb is above this threshold (since a linear portion of the network will be connected
and could be hit just by random sampling), this is not the case we are interested in modeling from
an applications perspective. To formalize the threshold for pb, we require that every community
has (in expectation) less than one live edge to other communities.

Assumption 4. pbq · (n− |Ci|)|Ci|< 1 ∀Ci.

Lastly, we assume

Assumption 5. pb <
1
n .

This implies that the between-community edges by themselves do not create a giant connected
component in G (which is clearly what we expect in practice).

Let µ = 1
K

∑K
i=1|Ci| be the average size of the top K communities. We prove the following

approximation guarantee:

Theorem 2. Suppose that ρ ≤ µ
n and choose ε < 3

8 . Using the same number of samples as in
Theorem 1, ARISEN influences at least(

1− cmax
12 log n

µ

)
β2
min

βmax

(
1− e−(1−ε) − ε− 1

K
− o(1)

)
OPT

nodes in expectation.

Proof. We first deal with the accuracy of the size estimations in Step 1 and then provide a new
bound on OPT . Subsequently, we wrap up the remaining details to obtain the stated guarantee.

Updated analysis of Step 1

We prove that the size estimates are correct with probability 1−o(1) since there are sufficiently few
between-community edges. Our analysis uses the connection between the conductance of a graph
and the properties of random walks on it, so we start by introducing a few definitions. The volume
of a set of nodes S, denoted by µ(S) is the sum of the degrees of the nodes in S:

µ(S) =
∑
i∈S

di

Let E(S, S−V ) denote the set of edges between nodes in S and those in V −S. They key ratio
for our analysis is
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Φ(S) =
|E(S, V − S)|

µ(S)
.

This is nearly the same as the normal definition of conductance, which has min(µ(S), µ(V −S))
in the denominator. However, our analysis depends only on µ(S). The key lemma that we use
relates Φ(S) to the properties of a random walk in S:

Lemma 20 (Spielman and Teng [8], Prop. 2.5). The probability that a random walk, started from
a random node of S, stays entirely within S for t steps is at least 1− 1

2 tΦ(S).

We remark that Spielman and Teng stated the lemma for the normal conductance (not our Φ),
but their analysis trivially applies to Φ as we have defined it.

Lemma 20 will be used to control the probability that any of the nodes we sample in Step 1c
lie outside of the starting community. Fix any Ci. We apply the Chernoff bound to the numerator
and denominator of Φ(Ci) to show that it is close to logn

n with high probability over the draw of G
from the SBM.

First, we show that with high probability, |E(Ci, V −Ci)|≤ 7 logn
q . Let Z = |E(Ci, V −Ci)| and

note that Z is the sum of (n − |Ci|)|Ci| indicator variables giving whether each possible between-
community edge is present. From Assumption 4, we know that E[Z] < 1

q . Thus via the Chernoff
bound we have

Pr[Z > (1 + 6 log n)E[Z]] ≤ exp

(
−1

3

(
6 log n

q

))
≤ 1

n2

There are at most n total communities, so taking union bound over all of them gives total failure
probability at most 1

n . Conditioned on concentration holding, we have Z ≤ (6 log n + 1)E[Z] ≤
7 logn
q .

Next, we examine µ(Ci). We have E[µ(Ci)] = pw|Ci|2. By assumption, pw|Ci|2≥ |Ci|. Via
Chernoff bound,

Pr

[
µ(Ci) ≤

(
1−

√
6 log n

|Ci|

)
E[µ(Ci)]

]
≤ exp

(
−1

3

(
6 log n

|Ci|

)
|Ci|
)

≤ 1

n2
.

Again via union bound, the total failure probability over all communities is at most 1
n .

Conditioning on the bounds on both the numerator and denominator holding, we have

Φ(Ci) ≤
7 log n(

1−
√

6 logn
|Ci|

)
qpw|Ci|2

Since qpw|Ci|≥ 1 by Assumption 2, this implies
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Φ(Ci) ≤
7 log n(

1−
√

6 logn
|Ci|

)
|Ci|

=
7 log n

|Ci|−
√

6|Ci|log n

Now we can apply Lemma 20 to bound the probability that the random walk leaves Ci. In any
single iteration, we take R random walk steps, which leave Ci with probability at most 1

2RΦ(Ci).
There are T iterations in total, so via union bound the total probability that any random walk
leaves its starting community is at most 1

2Φ(Cmin)RT where Cmin is the smallest community. This
yields

1

2
Φ(Cmin)RT = O

((
1

ε5ρ

)
log3 1

ερ
log6 n

) 7
2 log n

|Ci|−
√

6|Ci|log n

= O


(

1
ε5ρ

)
log3 1

ερ log6 n

|Cmin|

 (since |Cmin|= poly(n))

= o(1)
(

by Assumption 3,
1

|Cmin|(ε5ρ)
=

1

poly(n)

)
We conclude that the total probability of any random walk leaving its starting community is

at most o(1). Conditioning on this extra event, Corollary 1 for the pb = 0 case still holds, which is
the only guarantee needed on the output of Step 1.

Bounding OPT

We prove the following guarantee on the relative sizes of
∑K

i=1|Ci| and OPT in the pb > 0 setting:

Lemma 21. Let µ = 1
K

∑K
i=1|Ci| denote the average size of the top K communities. Then we have

K∑
i=1

|Ci| ≥

(
1− cmax
12 log n

µ

)
OPT

Proof. Let X1...XK be the sizes of the K largest connected components induced by the SBM and

ICM. We have OPT ≤ E
[∑K

i=1Xi

]
. Each Xi contains the giant connected component in one or

more communities. Let C∗i be the (random) community which is the largest community whose
giant component is contained in Xi. Let C∗ be a vector which collects |C∗1 |...|C∗K |. Clearly, we

have
∑K

i=1|Ci|≥ E
[∑K

i=1|C∗i |
]
. We will now bound the amount by which E

[∑K
i=1Xi

]
can exceed

E
[∑K

i=1|C∗i |
]
, which in turn lets us bound

∑K
i=1|Ci| in terms of OPT .

The crucial step is to bound a single Xi relative to |C∗i |. We show

Lemma 22. E[Xi|C∗] ≤
(

12
1−cmax

)
log
(

n
|C∗i |

)
|C∗i |

Proof. We analyze a branching process, similar to that used to analyze the subcritical Erdős-Rényi
graph. This process starts at a single node, and then reveals the status of all potential edges to
the remaining nodes. Each edge that exists creates a new child and the process then explores the
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edges of each child. The size of the connected component is the total number of nodes explored by
the branching process.

Our analysis will collapse the giant connected component of each community into a single node
in a higher-level branching process. This allows us to bound the total number of nodes of G that
can be absorbed into a connected component. The major challenge for us to analyze the branching
process is that the communities need not have equal sizes, so we cannot apply the analysis of the
Erdős-Rényi graph exactly. We prove that the number of nodes reached in the true branching
process is stochastically dominated by one in which every community in the graph has size |C∗i |.

Conditioning on C∗ (as in the lemma statement) complicates the branching process because
if a given community is reached, then it has a chance to reach a community with size above |C∗i |,
or to reach a community in one of the other components. Hence, conditioning on C∗ reduces
the probability that the branching process will reach any of the other communities in the graph.
However, the true process is stochastically dominated by a branching process on the subgraph
induced by the communities with size at most |C∗i |; call this graph GA. Essentially, in this process
we ignore that conditioning on |C∗i | can indirectly limit the number of nodes reached, and that the
other components could “compete” with Xi for nodes. To formalize this reasoning, we define two
branching processes:

BP-cond: This is the “true” branching process. Pick a node in C∗i to start from. From the
starting node, reveal the status (live or not) of all edges from this node’s community to other
communities. These revelations follow a distribution which conditions on (1) not reaching a com-
munity with size greater than C∗i or (2) reaching a community which belongs to the other K − 1
components. Note that the BP-cond’s corresponding to each of the K largest components could
have a complicated joint distribution but we do not need to fully describe it (as will be seen below).

BP-A: Pick a node in the largest community of GA. Follow the branching process from that
node using only edges between nodes in GA (but ignoring the two conditions for BP-cond)

Let Zcond (resp ZA) be a random variable giving the total number of nodes in communities
reached by BP-cond (resp. BP-A). We have

Claim 1. Zcond is stochastically dominated by ZA

Proof. Let Ye ∀e ∈ V ×V be an indicator variable for the event that edge e is live (i.e., it is present
in both the SBM and ICM). Y is a vector which collects all of the Ye. Let h(Y ) denote the total
number of nodes reached by the branching process when the status of the edges are specified by Y .
Note that h is monotone nondecreasing in Y . The distribution of Zcond or ZA can be simulated
by drawing Y from the distribution induced by the corresponding branching process and then
returning h(Y ). Consider any subset E′ ⊆ {e ∈ V × V }. We couple Zcond and ZA by having them
share Ye for all e 6∈ E′. We have

PrY ∼BP-cond|{Ye|e6∈E′}
[
Ye = 1 ∀e ∈ E′

]
≤ PrY ∼BP-A|{Ye|e 6∈E′}

[
Ye = 1 ∀e ∈ E′

]
. (3)

To see this, note that under BP-cond, the probability that Ye = 1 ∀e ∈ E′ is either

• The probability of this event under the Ye’s original marginal distribution (drawn from the
SBM and ICM) if setting them equal to 1 would not violate either condition for BP-cond.

• 0 if setting them to 1 would create a violation

However, BP-A always follows the first case, which assigns at least as high a probability to the
event Ye = 1 ∀e ∈ E′. The claim then follows from Equation 3 combined with the monotonicity of
h.
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This claim allows us to analyze BP-A in place of BP-cond. However, BP-A is still difficult to
deal with because the sizes of the communities may be different. So, we introduce a process which
simulates a graph where all communities have size |C∗i |.

BP-B: Let GB be a graph divided into communities of size |C∗i |, with n
|C∗i |

communities in total.

Follow the same process as in in BP-A (starting from the same node), except on GB instead of GA.
ZB gives the total number of nodes reached.

Claim 2. ZA is stochastically dominated by ZB.

Proof. The idea is to interpolate between BP-A and BP-B by considering a series of local moves
in which we split one of the communities in GB into two smaller communities. Consider a series of
graphs GB = G1....GW = GA with the following property: Gi+1 is equal to Gi except that a single
community Ci of Gi is split into two communities C1

i and C2
i . With each Gi, we can associate

a branching process BP-i and corresponding Zi. We will show that for any i, Zi stochastically
dominates Zi+1. Since for any GA there exists a sequence of local moves that can produce it from
GB, this will show that ZB stochastically dominates ZA.

To prove that Zi stochastically dominates Zi+1, we couple BP-i and BP-(i+ 1) by sharing the
status (live or not) of every edge in the graph between them. If BP-(i + 1) reaches either C1

i or
C2
i , then BP-i reaches Ci = C1

i ∪C2
i . Hence, every community that is visited by BP-(i+ 1) is also

visited by BP-i. This establishes that Zi stochastically dominates Zi+1, as desired.

BP-B is a nonuniform branching process in which the distribution of the number of children at
each step depends on the total number of communities which remain to be explored. Note that GB
has n

|C∗i |
communities in total. Suppose that BP-B has explored k communities so far. Define qeff

to be the “effective” probability of a live edge between two communities:

qeff = 1− (1− pbq)|C
∗
i |2

By definition, we have qeff
n
|C∗i |

≤ cmax < 1. The number of children spawned by the kth

community is distributed as Bin( n
|C∗i |
−k, qeff). Since this nonuniform process is difficult to analyze,

we note that it is stochastically dominated by a final branching process:
BP-uniform: A Galtson-Watson branching process with offspring distribution Bin( n

|C∗i |
, qeff).

Xi represents the ith largest connected component in G, which we have established is stochas-
tically dominated by the corresponding component generated by BP-B. For simplicity, we upper
bound the ith largest component by the single largest component. In GB there are at most n

|C∗i |
components. The maximum of n

|C∗i |
draws from BP-B is stochastically dominated by the maximum

of n
|C∗i |

draws of Zuniform.

Claim 3. Draw Z1...ZN iid as Zuniform. Then

E [maxZi] ≤ 12

(
1

1− n
|C∗i |

qeff

)
logN

Proof. For any j, let ξj be iid from Bin( n
|C∗i |

, qeff). Draief and Massoulie [2] (Lemma 1.9) give the

following tail bound for Zi:

Pr[Zi ≥ K] ≤ Pr

 K∑
j=1

ξj ≥ K


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∑K
j=1 ξj is distributed as Bin(K n

|C∗i |
, qeff), so via Chernoff bound we have

Pr

 K∑
j=1

ξj ≥ K

 ≤ exp

(
−1

3
K

(
1− n

|C∗i |
qeff

))
So, we see that Zi is stochastically dominated by an exponential random variable with mean

λ = 1
3

(
1− n

|C∗i |
qeff

)
. Dasarathy [1] (Eq. 7) show that the expected maximum of N exponential

variables is upper bounded by 2 logN

λ(1− 1
N )

. Noting that 1 − 1
N ≥

1
2 and λ ≥ 1

3(1 − cmax), the claim

follows.

By substituting N = n
|C∗i |

into Claim 3 and multiplying by |C∗i | (the size of each community

in GA), we conclude the proof of the lemma. We remark here that the reason we have a factor
1 − cmax and not (1 − cmax)2 is that we have bounded the expectation of the maximum of the N
variables, not given a bound that holds with high probability.

With the key lemma in hand, we are now ready to proceed to the proof of our bound on OPT .
Let OPT (C∗) be a random variable which gives the expected optimal value conditioned on C∗.

OPT = E
C∗

[
E
[
OPT (C∗)

∣∣∣C∗
]]

≤ E
C∗

[
K∑
i=1

Xi

∣∣∣C∗
]

≤ E
C∗

[
K∑
i=1

12

1− cmax
log

(
n

|C∗i |

)
|C∗i |

]
(Lemma 22)

≤
K∑
i=1

12

1− cmax
log

(
n

|Ci|

)
|Ci| (|Ci| ≥ |C∗i |).

Given the guarantee that
∑K

i=1
12

1−cmax log
(

n
|Ci|

)
|Ci| ≥ OPT , we now analyze how small

∑K
i=1|Ci|

can be. We are interested in the value of the optimization problem

min
|C1|...|CK |

K∑
i=1

|Ci|

s.t.

K∑
i=1

12

1− cmax
log

(
n

|Ci|

)
|Ci| ≥ OPT

This can be reformulated as the convex program

min
|C1|...|CK |

K∑
i=1

|Ci|

s.t. −
K∑
i=1

12

1− cmax
log

(
n

|Ci|

)
|Ci| ≤ −OPT
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We structurally characterize the optimal solution as follows. Let v∗ denote the optimal value
of the above convex program. Note that Slater’s condition holds, and so we have strong duality.
Consider the Lagrange dual function

L(λ) = inf
|C1|...|CK |

K∑
i=1

|Ci|+λ

(
OPT −

K∑
i=1

12

1− cmax
log

(
n

|Ci|

)
|Ci|

)

where the dual problem is

max
λ≥0
L(λ).

Let λ∗ be the optimal value of the Lagrange multiplier. We write

v∗ = L(λ∗)

= inf
|C1|...|CK |

K∑
i=1

|Ci|+λ∗
(
OPT −

K∑
i=1

12

1− cmax
log

(
n

|Ci|

)
|Ci|

)
(4)

Examining Equation 4, let a1...aK be values of |C1|...|CK | which achieve v∗. We must have that

a1...aK maximize
∑K

i=1 log
(
n
ai

)
ai subject to

∑K
i=1 ai = v∗ (otherwise a smaller value could have

been achieved). Since 12
1−cmax log

(
n
ai

)
ai is concave, Jensen’s inequality gives

K∑
i=1

log

(
n

ai

)
ai ≤ K log

(
n

1
K

∑K
i=1 ai

)(
1

K

K∑
i=1

ai

)
.

That is,
∑K

i=1 log
(
n
ai

)
ai is maximized when a1 = a2 = ... = aK = 1

K

∑K
i=1 ai. Thus, the

optimal value v∗ can be obtained when we restrict the space of feasible |C1|...|CK | to points where
all are equal. Let µ = 1

K

∑K
i=1|Ci| denote the average size of the top K communities. We rephrase

the original optimization problem as

min
µ
µK

s.t. µK

(
12

1− cmax
log

(
n

µ

))
≥ OPT

The constraint in this problem gives a lower bound on the possible size of µK. Thus we have

K∑
i=1

|Ci| = µK ≥

(
1− cmax
12 log n

µ

)
OPT

which concludes the proof of the lemma.
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In order to conclude the proof of the theorem, we wrap up a few details which allow us to use
the machinery of the pb = 0 case. First, we show that (conditioned on the random walk steps all
staying in their starting community), the estimated degrees are still accurate. Formally, Lemma
5 still holds because the process is identical to the pb = 0 case if the walk never leads its starting
community. Our assumption that pb <

1
n ensures that between-community edges do not impact the

requirement that dmax = O(log2 n) (Lemma 12), since a simple Chernoff bound guarantees that
with high probability, no edge has more than O(log n) edges to nodes in other communities.

What has changed is that our estimate of the average degree accounts for between community

edges: Ŝ = d̂−npb
pw−pb . We now show that the equivalent of Corollary 1 holds when pb > 0.

Lemma 23. When pb > 0, with probability at least 1 − 2ε − o(1), the estimated size Ŝ for each
sample from a community of size |C| satisfies (1− 4ε)|C|≤ Ŝ ≤ (1 + 4ε)|C|.

Proof. Let d̂ be the estimated average degree. Conditioning on concentration holding via Lemma
5, we have that

(1− 2ε)(pw|C|+(n− |C|)pb) ≤ d̂ ≤ (1 + 2ε)(pw|C|+(n− |C|)pb)

We estimate the size as Ŝ = d̂−npb
pw−pb . We now show the upper bound on Ŝ; the argument for the

lower bound is exactly the same.

Ŝ ≤ (1 + 2ε)(pw|C|+(n− |C|)pb)− npb
pw − pb

≤ (1 + 2ε)(pw|C|+(n− |C|)pb − npb) + 2εnpb
pw − pb

= (1 + 2ε)|C|+ 2εnpb
pw − pb

.

So, we just need to bound the size of 2εnpb
pw−pb relative to |C|. We know by Assumption 5 that

2εnpb < 2ε. Further, using Assumption 1,

pw − pb >
log|C|
|C|

− 1

n

≥ log|C|
|C|

− 1

|C|

≥ 1

|C|

from which we conclude that 2εnpb
pw−pb ≤ 2ε|C|. Thus, Ŝ ≤ (1 + 4ε)|C|.

Thus, the samples in the pb > 0 case satisfy the conditions of Corollary 1 from the pb = 0
case. Lastly, via the bound on

∑K
i=1|Ci| in Lemma 21, we can apply Lemma 10 with

∑K
i=1|Ci| =(

1−cmax
12 log n

µ

)
OPT to obtain a bound on the total influence attained by the algorithm. Lemma 10 only

counts influence that spreads between communities, not using between-community edges. Clearly,
the algorithm’s utility can only increase if we counted influence along these edges. The bound from
Lemma 10 then directly implies that the algorithm influences at least(

1− cmax
12 log n

µ

)
β2
min

βmax

(
1− e−(1−ε) − ε− 1

K
− o(1)

)
OPT
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nodes in expectation, which concludes the proof.
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2 Estimating the surrogate objective g

In this section, we explain more detail our procedure for estimating the surrogate objective (g).
Recall that we defined g(X) =

∑L
i=1 f(X,Ci), i.e, the influence spread of X considering only

within-community edges. We would like a way of estimated E[g(X)] using only local information.
Note that the influence spread within each Ci depends only on the nodes in X ∩Ci, which we write

as XCi for short. So, E[g(X)] can be rewritten as E
[∑L

i=1 f(XCi , Ci)
]
. If we knew XCi , then we

could calculate E [f(XCi , Ci)] by simulating draws from the SBM for the unobserved portions of Ci
conditioned on the presence of the subgraphs that the algorithm visited. Thus, the main challenge
is that we do not know what community each node belongs to.

We start out by rewriting the influence bound in terms of the marginal contribution made by
each vi. Let χ(v) give the community of vertex v. We can write the bound as

g(X) =

T∑
i=1

E
X∼w

[
f(Xχ(vi) ∩ {v1...vi}, χ(vi)− f(Xχ(vi) ∩ {v1...vi−1}, χ(vi))

]
where X ∼ w denotes a seed set X with each element independently sampled with probability

proportional to w. Taken at face value, this does not seem like an improvement because we still
do not know Xχ(vi) for each term. However, since we have an estimate for the size of χ(vi), we
know (approximately) how many other times χ(vi) will have been sampled as well (approximately)
the weight that each of these samples will have received. For each node, we can simulate a set
sim(vi) which contains vi plus a sample from the distribution of the other nodes that ARISEN
sampled from χ(vi) in its random walks. The only issue is that we do not know where each node of
sim(vi) lies in the order {v1...vT }, i.e., whether it takes “precedence” over vi when we compute the
marginal contributions. The final ingredient we need to overcome this obstacle is to realize that
there is nothing special about the ordering {v1...vT }; we can equivalently rearrange the nodes in
any order. In fact, we take the expectation over a uniformly random permutation π of the ordering:
we first draw π and then sum in the order vπ(1)....vπ(T ). Via linearity of expectation, we can take
a different permutation for each term i = 1....T , where the permutation in term i need only a
establish an ordering among the elements of sim(vi). For any set X, let [X]iπ represent the first i
elements of X in the permutation π. Then we can write the influence bound as

g(X) =
T∑
i=1

E
π,sim(vi),X

[
f([X ∩ sim(vi)]

i
π, χ(vi))− f([X ∩ sim(vi)]

i−1
π , χ(vi))

]
.

In this final form, we can calculate each term by averaging over simulations of sim(vi), an
ordering π on sim(vi), and set of seed nodes from sim(vi) that are chosen (given the simulated
weights). As discussed earlier, we can the compute f by averaging over simulations of the draw of
Ci, and simulating the ICM on each simulated community. Complete pseudocode for EstVal is
given in Algorithm 2. The proof that EstVal accurately estimates g follows immediately from the
construction given above.
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Algorithm 2 EstVal

1: for i = 1...len(w) do
2: for j = 1...M do
3: Simulate Gji from G(pw, Ŝi) conditioned on Hi appearing.
4: for k = 1...P do
5: π = a uniformly random permutation on V (Gji )

6: N ∼ Binom (T, Ŝin )

7: Draw u1...uN uniformly random from V (Gji ) \ V (Hi)
8: for ` = 1...N do
9: wsamp` = weight w assigns to a node with value f(u`, G

j
i )

10: end for
11: X = a random subset of u1...uN when K − 1 nodes are chosen from all samples, the

total weight is ||w||1, and u1...uN have corresponding weights from wsamp

12: for u ∈ X do
13: if π(si) > π(u), remove u from X
14: end for

15: val+ = 1
MP

(
1−

(
1− wi

||w||1

)K)[
f({si} ∪X,Gji )− f(X,Gji )

]
16: end for
17: end for
18: end for
19: return val

3 Additional experimental results

3.1 Parameter settings

In all runs we set B = 0 (no burn-in). The values for R and T can be found in the table below.
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Network K T R

homeless-a 0.01 · n 5 10
homeless-a 0.015 · n 5 10
homeless-a 0.02 · n 5 10
homeless-b 0.01 · n 7 12
homeless-b 0.015 · n 7 12
homeless-b 0.02 · n 7 12
india-1 0.005 · n 10 15
india-1 0.01 · n 10 15
india-1 0.015 · n 10 15
india-1 0.02 · n 10 15
india-2 0.005 · n 7 12
india-2 0.01 · n 10 12
india-2 0.015 · n 10 12
india-2 0.02 · n 10 12
india-2 0.005 · n 6 25
india-2 0.01 · n 12 25
india-2 0.015 · n 18 25
india-2 0.02 · n 25 25
netscience 0.005 · n 40 25
netscience 0.01 · n 40 25
netscience 0.015 · n 40 25
netscience 0.02 · n 40 25
SBM 0.005 · n 6 25
SBM 0.01 · n 12 25
SBM 0.015 · n 18 25
SBM 0.02 · n 25 25

3.2 Influence spread

K = 0.005 · n
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K = 0.01 · n
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K = 0.015 · n
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K = 0.02 · n
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3.3 Query cost
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