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Data Decisions???
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Data Decisionsarg max
𝑥𝑥∈𝑋𝑋

𝑓𝑓 𝑥𝑥,𝜃𝜃

Standard two stage: predict then optimize

Training: maximize accuracy
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Data Decisionsarg max
𝑥𝑥∈𝑋𝑋

𝑓𝑓 𝑥𝑥,𝜃𝜃

Standard two stage: predict then optimize

Challenge: misalignment between “accuracy” 
and decision quality

Training: maximize accuracy
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Data Decisions

Pure end to end

Training: maximize decision quality
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Data Decisions

Pure end to end

Challenge: optimization is hard

Training: maximize decision quality
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Data Decisions

Decision-focused learning: differential optimization during training

arg max
𝑥𝑥∈𝑋𝑋

𝑓𝑓 𝑥𝑥,𝜃𝜃

Training: maximize decision quality
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Data Decisions

Challenge: how to make optimization differentiable?

arg max
𝑥𝑥∈𝑋𝑋

𝑓𝑓 𝑥𝑥,𝜃𝜃

Training: maximize decision quality

Decision-focused learning: differential optimization during training



Relax + differentiate
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Forward pass: run a solver

Backward pass: sensitivity analysis via KKT conditions



Relax + differentiate
• Convex QPs [Amos and Kolter 2018, Donti et al 2018]
• Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
• MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
• MIPs [Ferber, Wilder, Dilkina, Tambe 2019]

• Monday @ 11am, Room 612
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What’s wrong with relaxations?
• Some problems don’t have good ones
• Slow to solve continuous optimization problem
• Slower to backprop through – 𝑂𝑂(𝑛𝑛3)
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This work
• Alternative: include solver for a simpler proxy problem
• Learn a representation that maps hard problem to simple one
• Instantiate this idea for a class of graph optimization problems
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Graph learning + optimization
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Problem classes
• Partition the nodes into K disjoint groups

• Community detection, maxcut, …

• Select a subset of K nodes
• Facility location, influence maximization, vaccination, …

• Methods of choice are often combinatorial/discrete
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Approach
• Observation: grouping nodes into communities is a good heuristic

• Partitioning: correspond to well-connected subgroups
• Facility location: put one facility in each community

• Observation: graph learning approaches already embed into 𝑅𝑅𝑛𝑛
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Approach
1. Start with clustering algorithm (in 𝑅𝑅𝑛𝑛)

• Can (approximately) differentiate very quickly 

2. Train embeddings (representation) to solve the particular problem
• Automatically learning a good continuous relaxation!
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ClusterNet Approach
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Node embedding 
(GCN)

K-means 
clustering Locate 1 facility in 

each community



Differentiable K-means
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Update cluster centers

Softmax update to 
node assignments

Forward 
pass



Differentiable K-means
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Backward 
pass

• Option 1: differentiate through the fixed-point condition 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡+1

• Prohibitively slow, memory-intensive 



Differentiable K-means
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Backward 
pass

• Option 1: differentiate through the fixed-point condition 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡+1

• Prohibitively slow, memory-intensive 

• Option 2: unroll the entire series of updates
• Cost scales with # iterations
• Have to stick to differentiable operations 



Differentiable K-means
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Backward 
pass

• Option 1: differentiate through the fixed-point condition 
𝜇𝜇𝑡𝑡 = 𝜇𝜇𝑡𝑡+1

• Prohibitively slow, memory-intensive 

• Option 2: unroll the entire series of updates
• Cost scales with # iterations
• Have to stick to differentiable operations 

• Option 3: get the solution, then unroll one update
• Do anything to solve the forward pass
• Linear time/memory, implemented in vanilla pytorch



Differentiable K-means
Theorem [informal]: provided the clusters are sufficiently balanced and 
well-separated, the Option 3 approximate gradients converge 
exponentially quickly to the true ones.

Idea: show that this corresponds to approximating a particular term in 
the analytical fixed-point gradients.
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ClusterNet Approach
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GCN node 
embeddings

K-means 
clustering Locate 1 facility in 

each community



ClusterNet Approach
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GCN node 
embeddings

K-means 
clustering Locate 1 facility in 

each community

Loss: quality of 
facility assignment



ClusterNet Approach
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embeddings

K-means 
clustering Locate 1 facility in 

each community

Loss: quality of 
facility assignment

Differentiate 
through K-means



ClusterNet Approach
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GCN node 
embeddings

K-means 
clustering Locate 1 facility in 

each community

Loss: quality of 
facility assignment

Differentiate 
through K-means

Update GCN 
params



Experiments
• Learning problem: link prediction
• Optimization: community detection and facility location problems
• Train GCNs as predictive component
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Example: community detection
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Observe partial graph Predict unseen edges Find communities
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Example: community detection
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• Useful in scientific discovery (social groups, functional modules in biological networks)
• In applications, two-stage approach is common 

[Yan & Gegory ’12, Burgess et al ‘16, Berlusconi et al ‘16, Tan et al ‘16, Bahulker et al ’18…]

Observe partial graph Predict unseen edges Find communities



Experiments
• Learning problem: link prediction
• Optimization: community detection and facility location problems
• Train GCNs as predictive component
• Comparison

• Two stage: GCN + expert-designed algorithm (2Stage)
• Pure end to end: Deep GCN to predict optimal solution (e2e)
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Results: single-graph link prediction
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Representative example from cora, citeseer, protein interaction, facebook, adolescent health networks  



Results: generalization across graphs
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ClusterNet learns generalizable strategies for optimization!



Takeaways
• Good decisions require integrating learning and optimization
• Pure end-to-end methods miss out on useful structure
• Even simple optimization primitives provide good inductive bias

NeurIPS’19 paper, see bryanwilder.github.io 
Code available at https://github.com/bwilder0/clusternet

10/27/2019 Bryan Wilder (Harvard) 33

https://github.com/bwilder0/clusternet
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