Data

???

Decisions
Standard two stage: predict then optimize
Standard two stage: predict then optimize

Challenge: misalignment between “accuracy” and decision quality
Pure end to end

Training: maximize decision quality
Pure end to end

Training: maximize decision quality

Challenge: optimization is hard
Data

Decision-focused learning: differential optimization during training

Decisions

Training: maximize decision quality

\[\arg \max_{x \in X} f(x, \theta) \]
Data

Decision-focused learning: differential optimization during training

Challenge: how to make optimization differentiable?

Decisions

Training: maximize decision quality

$$\arg\max_{x \in X} f(x, \theta)$$
Relax + differentiate

Forward pass: run a solver

Backward pass: sensitivity analysis via KKT conditions
Relax + differentiate

• Convex QPs [Amos and Kolter 2018, Donti et al 2018]
• Linear and submodular programs [Wilder, Dilkina, Tambe 2019]
• MAXSAT (via SDP relaxation) [Wang, Donti, Wilder, Kolter 2019]
• MIPs [Ferber, Wilder, Dilkina, Tambe 2019]
 • Monday @ 11am, Room 612
What’s wrong with relaxations?

- Some problems don’t have good ones
- Slow to solve continuous optimization problem
- Slower to backprop through – $O(n^3)$
This work

• Alternative: include solver for a simpler proxy problem
• Learn a representation that maps hard problem to simple one
• Instantiate this idea for a class of graph optimization problems
Graph learning + optimization
Problem classes

• Partition the nodes into K disjoint groups
 • Community detection, maxcut, ...

• Select a subset of K nodes
 • Facility location, influence maximization, vaccination, ...

• Methods of choice are often combinatorial/discrete
Approach

• Observation: grouping nodes into communities is a good heuristic
 • Partitioning: correspond to well-connected subgroups
 • Facility location: put one facility in each community

• Observation: graph learning approaches already embed into R^n
Approach

1. Start with clustering algorithm (in \mathbb{R}^n)
 • Can (approximately) differentiate very quickly

2. Train embeddings (representation) to solve the particular problem
 • Automatically learning a good continuous relaxation!
ClusterNet Approach

Node embedding (GCN)

K-means clustering

Locate 1 facility in each community
Differentiable K-means

Forward pass

Update cluster centers

\[\mu_k = \frac{\sum_j r_{jk} x_j}{\sum_j r_{jk}} \]

Softmax update to node assignments

\[r_{jk} = \frac{\exp(-\beta ||x_j - \mu_k||)}{\sum_{\ell} \exp(-\beta ||x_j - \mu_\ell||)} \]
Differentiable K-means

- Option 1: differentiate through the fixed-point condition
 \[\mu^t = \mu^{t+1} \]
 - Prohibitively slow, memory-intensive
Differentiable K-means

• Option 1: differentiate through the fixed-point condition
 \[\mu^t = \mu^{t+1} \]
 • Prohibitively slow, memory-intensive

• Option 2: unroll the entire series of updates
 • Cost scales with # iterations
 • Have to stick to differentiable operations
Differentiable K-means

- Option 1: differentiate through the fixed-point condition
 \[\mu^t = \mu^{t+1} \]
 - Prohibitively slow, memory-intensive
- Option 2: unroll the entire series of updates
 - Cost scales with # iterations
 - Have to stick to differentiable operations
- Option 3: get the solution, then unroll one update
 - Do anything to solve the forward pass
 - Linear time/memory, implemented in vanilla pytorch
Differentiable K-means

Theorem [informal]: provided the clusters are sufficiently balanced and well-separated, the Option 3 approximate gradients converge exponentially quickly to the true ones.

Idea: show that this corresponds to approximating a particular term in the analytical fixed-point gradients.
ClusterNet Approach

1. GCN node embeddings
2. K-means clustering
3. Locate 1 facility in each community
ClusterNet Approach

1. GCN node embeddings
2. K-means clustering
3. Locate 1 facility in each community
4. Loss: quality of facility assignment
ClusterNet Approach

- GCN node embeddings
- K-means clustering
- Locate 1 facility in each community
- Differentiate through K-means
- Loss: quality of facility assignment
ClusterNet Approach

- GCN node embeddings
- K-means clustering
- Locate 1 facility in each community
- Differentiate through K-means
- Loss: quality of facility assignment
- Update GCN params
Experiments

• **Learning problem:** link prediction
• **Optimization:** community detection and facility location problems
• Train **GCNs** as predictive component
Example: community detection

Observe partial graph

Predict unseen edges

Find communities

\[
\max_r \frac{1}{2m} \sum_{u,v \in V} \sum_{k=1}^{K} \left[A_{u,v} - \frac{d_u d_v}{2m} \right] r_{uk} r_{vk}
\]

\(r_{uk} \in \{0,1\} \quad \forall u \in V, k = 1 \ldots K \)

\(\sum_{k=1}^{K} r_{uk} = 1 \quad \forall u \in V \)
Example: community detection

- Useful in scientific discovery (social groups, functional modules in biological networks)
- In applications, two-stage approach is common

\[r_{uk} \in \{0,1\} \quad \forall u \in V, k = 1 \ldots K \]
\[\sum_{k=1}^{K} r_{uk} = 1 \quad \forall u \in V \]

\[
\max_r \frac{1}{2m} \sum_{u,v \in V} \sum_{k=1}^{K} \left[A_{u,v} - \frac{d_u d_v}{2m} \right] r_{uk} r_{vk}
\]
Experiments

- **Learning problem**: link prediction
- **Optimization**: community detection and facility location problems
- Train **GCNs** as predictive component
- **Comparison**
 - Two stage: GCN + expert-designed algorithm (2Stage)
 - Pure end to end: Deep GCN to predict optimal solution (e2e)
Results: single-graph link prediction

Community detection (higher is better)

Facility location (lower is better)

Representative example from cora, citeseer, protein interaction, facebook, adolescent health networks
Results: generalization across graphs

Community detection (higher is better)

Facility location (lower is better)

ClusterNet learns generalizable strategies for optimization!
Takeaways

• Good decisions require integrating learning and optimization
• Pure end-to-end methods miss out on useful structure
• Even simple optimization primitives provide good inductive bias

NeurIPS’19 paper, see bryanwilder.github.io
Code available at https://github.com/bwilder0/clusternet