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ABSTRACT
Election control considers the problem of an adversary who at-

tempts to tamper with a voting process, in order to either ensure

that their favored candidate wins (constructive control) or another

candidate loses (destructive control). As online social networks

have become significant sources of information for potential voters,

a new tool in an attacker’s arsenal is to effect control by harnessing

social influence, for example, by spreading fake news and other

forms of misinformation through online social media.

We consider the computational problem of election control via

social influence, studying the conditions under which finding good

adversarial strategies is computationally feasible. We consider two

objectives for the adversary in both the constructive and destructive

control settings: probability and margin of victory (POV and MOV,

respectively). We present several strong negative results, showing,

for example, that the problem ofmaximizing POV is inapproximable

for any constant factor. On the other hand, we present approxima-

tion algorithms which provide somewhat weaker approximation

guarantees, such as bicriteria approximations for the POV objective

and constant-factor approximations for MOV. Finally, we present

mixed integer programming formulations for these problems. Ex-

perimental results show that our approximation algorithms often

find near-optimal control strategies, indicating that election control

through social influence is a salient threat to election integrity.
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1 INTRODUCTION
The integrity of elections is crucial to the functioning of demo-

cratic institutions. As a result, a large body of work has focused

on the robustness of elections to various forms of control, where

a malicious party attempts to manipulate election results, e.g. by

bribing voters and adding or removing votes. While it is impor-

tant to understand the vulnerability of elections to such control,

there are many countries where blatant tampering is (fortunately)

uncommon. For instance, outright voter fraud is very rare in the

United States [1, 13].
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However, more subtle forms of election control may attempt to

subvert legitimate information channels towards malicious means.

For example, political advertising and news (in the editorial form)

are common legitimate means for convincing prospective voters.

Such communication, when sufficiently transparent, is often critical

to the effective functioning of democracy, and can exert consid-

erable influence on voting behavior [5, 17, 25]. Malicious control

over information promulgated through these channels can thus

have considerable impact, but is also difficult to achieve due to the

relative transparency of traditional media sources.

The increasing importance of social media, such as Facebook and

Twitter, for propagating information, including about political is-

sues [12, 29, 44], is a game changer. Both the decentralized nature of

information sources on social media, and their lack of transparency,

present malicious parties with an unprecedented opportunity to

influence a democratic political process. Recent evidence of deliber-

ate election tampering in the 2016 US presidential election through

fake news—deliberately falsified news content—suggests that this

issue is a major concern for election integerity for years to come [2].

For example, it is estimated that the typical American adult saw at

least one fake news story during the election cycle [2], and such

stories have been shown to impact voters’ judgment [39].

Motivated by these concerns, we initiate the first algorithmic

study of the problem of election control through social influence. In

our setting, there is a social network of voters who elect a single

winner by plurality vote. An outside party may select a subset of

nodes as seed nodes for a news story or advertisement. Each of

these seed nodes shares the story with their friends. Each friend

has some probability of being influenced in their voting preferences,

as well as sharing the story further. The question is whether, given

a limited budget, the attacker can influence enough voters to ensure

that a target candidate wins or loses the election. This is similar to

the election bribery setting considered by previous work, but with

the added consideration of social influence from the bribed nodes
1
.

This problem is closely related to influence maximization, which

has been studied primarily in the context of viral advertising. There,

the objective is simply to maximize the expected number of people

who receive a message. While influence maximization admits a

simple (1− 1/e)-approximation algorithm, election control through

social influence presents a number of new algorithmic challenges.

We study both constructive and destructive control for two different

objectives: 1) maximizing the expected margin by which a target

candidate wins (loses) the election (margin of victory, or MOV), and

2) maximizing the probability that a target candidate wins (loses)

election (probability of victory, or POV).

1
Our use of the term “election control" deviates slightly from common terminology.

Here, control refers generically to the objective of changing election outcomes, not the

means of doing so. The means considered in this paper are closest to the bribery setting

in previous work, e.g., we do not study adding or removing candidates or voters.



Summary of main results:We provide a mix of negative (hard-

ness and inapproximability) and positive (algorithmic) results for

the problem of election control through social influence. Our main

contributions are the following:

• We show that the MOV objective in the two candidate case

is monotone submodular and hence admits a (1−1/e) greedy

approximation algorithm.

• We prove that the POV objective is hard to approximate

to within any multiplicative factor for both constructive

and destructive control, even in elections with only two

candidates.

• We provide a bicriteria approximation algorithm for the POV

objective in the two-candidate case. In fact, our algorithm

applies to the more general problem of maximizing the prob-

ability that a submodular function exceeds a given threshold

value and may be of general interest.

• In the multicandidate case, we provide algorithms which

achieve similar guarantees as the two-candidate case up to

the loss of a constant factor (independent of the number of

candidates). Such guarantees hold for both constructive and

destructive control, for both the MOV and POV objectives.

• We give mixed integer linear programming (MILP) formula-

tions for all of the above settings which can be used to find

optimal solutions.

• We experimentally compare our approximation algorithms

to the optimal strategies produced by the MILP. Despite

formal hardness results, our approximation algorithms of-

ten find near-optimal solutions, particularly for the MOV

objective. This suggests that computational hardness may

not always be a practical barrier to controlling elections via

social influence.

2 RELATEDWORK
Our work is closely related to two research areas: election control

and influence maximization. These bodies of work are separate: to

our knowledge there is no previous work which considers election

control using social influence (though there is a sizable literature

studying opinion dynamics and social choice [15, 36, 40, 43]). The

computational study of election control was started by Bartholdi et

al. [3], who considered constructive control. The destructive control

setting was introduced by Hemaspaandra et al. [28]. A large body of

work has studied election control under different settings and voting

rules [16, 20] including bribing voters [4, 21, 22, 24, 46], adding or

deleting voters [19, 23, 33, 34], and adding or deleting candidates [8,

23, 33]. The main difference between our work and previous work

on election control is that we introduce and analyze social influence

as a novel mechanism for both constructive and destructive control.

Perhaps the closest related work is that of Bredereck and Elkind

[6], who study the manipulation of opinion dynamics in a different

model (though not in the context of elections).

There is a large, parallel literature devoted to influence maxi-

mization in social networks. This line of work was introduced by

Kempe et al. [30] who introduced influence maximization in the

independent cascade model and proposed a greedy algorithm based

on submodularity. Since then, a number of newer algorithms have

been proposed, mostly attempting to scale up the greedy algorithm

to very large graphs [10, 14, 26, 42]. Subsequent work has also

introduced several related settings, e.g., continuous time dynam-

ics [18, 41], bandit settings where dynamics are learned over time

[7, 11, 32], or robust problems where influence probabilities are

uncertain [9, 27, 35, 45]. None of this work considers using social in-

fluence to control an election, and our setting brings a range of new

technical challenges. Almost all work on influence maximization

is founded on submodularity of the objective function. However,

even though we use the same model of influence spread, objectives

related to election control often violate submodularity, requiring

new algorithmic techniques. We mention here work by Krause et al.

[31] on robust submodular optimization. For optimizing the POV

objective, we use a similar form of surrogate objective. However,

we aim to maximize the probability of a desired outcome, not the

worst-case value, so both our final algorithm and analysis are novel.

3 PROBLEM FORMULATION
Consider an election with candidates C = {c∗, c1, c2, ...cℓ}. c∗ is a
special target candidate, and the objective of the election control

problem is to make c∗ either win the election (constructive control)

or lose (destructive control). The voters are the nodes of a graph

G = (V ,E). Each voter v has an ordering πv over the candidates

and casts a vote for πv (1), their first ranked candidate. We assume

that voters do not behave strategically. The winner is decided via

plurality (the candidate with the most votes wins the election). If

there is a tie, we say that the attacker fails. This tie-breaking does

not impact any of our results. Let V
j
ci = {v ∈ V : πv (j) = ci } be the

voters who rank candidate ci in place j. Initially, ci has |V
1

ci | votes.

Social influence: There is an attacker whowishes to change the
results of the election by spreading messages which cause voters

to change their ordering over candidates. In constructive control,

the attacker can spread a message which causes any voter v who

becomes influenced to promote c∗ by one place in πv (exchanging

c∗ with the candidate previously ranked above them). If πv (c∗) = 1,

the message has no effect on v , but v may still decide to share the

message with their neighbors. In destructive control, a voter who

is influenced demotes c∗ by one place in πv . Influence spreads via
the independent cascade model (ICM), the most common model in

the influence maximization literature. Each edge (u,v) ∈ E has a

propagation probabilitypu,v . Ifu is influenced, it makes one attempt

to influence each neighbor v . Each attempt succeeds independently

with probability pu,v . The attacker may select a set of k seed nodes

who are influenced at the start of the process. The diffusion then

proceeds in discrete time steps until no new activations are made.

We also introduce a useful alternate view of the ICM, the live-

graph model. We can equivalently see the ICM as removing each

edge (u,v) from the graph with probability 1−pu,v . A node is influ-

enced if it is reachable from any seed node via the edges that remain.

Call any specific setting of present/absent edges a scenario y, with

induced graph Gy . Letm = 2
|E |

be the total number of scenarios.

Let f (S,y) denote the number of nodes which are reachable from

any seed node in S on graph Gy . The expected number of nodes

influenced under the ICM is just f (S) = Ey [f (S,y)]. Similarly, the

probability that the number of influenced nodes exceeds any thresh-

old value ∆ is Pry [f (S,y) ≥ ∆]. At times, we will want to specifi-

cally reason about the probability some subset of V is influenced.



For anyA ⊆ V , let f (S,y,A) denote the number of nodes inA reach-

able from S in scenario y. Analogously, f (S,A) = Ey [f (S,y,A)]. We

remark that such functions can be evaluated up to arbitrary preci-

sion by averaging over random samples for y. For simplicity, we

ignore such issues here since they are well understood [10, 14, 42].

Objectives:Wenow formally introduce our two objectives, start-

ingwith the simpler two-candidate case. In a two-candidate election,

constructive and destructive control are clearly equivalent since

maximizing the probability that c∗ loses is the same as maximizing

the probability that the other candidate wins (and vice versa). Hence,

we study only constructive control without loss of generality.

In the margin of victory (MOV) objective, we want to maximize

the expected number of votes by which c∗ wins the election. We

define our objective as the change in the expected margin:

MOV(S) = 2E
y

[
f (S,y,V 2

c∗ )
]
.

The factor 2 is present since reaching a voter in V 2

c∗ both adds

a vote for c∗ and removes a vote for the opponent. We study the

expected change in themargin (not themargin itself) so that approx-

imation ratios are well defined even when the margin is negative.

In the probability of victory (POV) objective, we want to maxi-

mize the probability that c∗ wins the election. Let∆ =
1

2

(
|V 1

c1

|−|V 1

c∗ |
)
+

1 be the number of voters that c∗ needs to reach in order to win the

election. The POV objective is

POV(S) = Pr

y

[
f (S,y,V 2

c∗ ) ≥ ∆

]
which is just the probability that at least ∆ of the voters who

have c∗ in second place are reached.

In the multicandidate case, constructive and destructive control

are no longer equivalent. Further, the impact of messages is more

complex than before. E.g., in constructive control not only does c∗
gain a vote, but another candidates loses a vote; we need to keep

track of the number of votes lost by each other candidate.

We start out by defining functions which give the change in the

margin between c∗ and another candidate ci in a given scenario

y when seed set S is chosen. Let χ (v, S,y) be 1 if node v is reach-

able from seed set S in the graph Gy . The change in margin (in

constructive and destructive control, respectively) is given by

дC (S,y, ci ) =

∑
v ∈V 2

c∗\V
1

ci

χ (v, S,y) + 2

∑
v ∈V 2

c∗∩V
1

ci

χ (v, S,y)

дD (S,y, ci ) =

∑
v ∈V 1

c∗\V
2

ci

χ (v, S,y) + 2

∑
v ∈V 1

c∗∩V
2

ci

χ (v, S,y)

which gives value 2 for every node that is flipped from ci to
c∗ (or vice versa) and hence count double towards the margin,

and 1 for other nodes. Based on this, we now give expressions for

the change in margin given any fixed scenario y and seed set S .
We start with constructive control. Note that before any interven-

tion, the margin is just maxci |V
1

ci |−|V
1

c∗ |. Afterwards, the margin is

maxc j |V
1

c j |−дC (S,y, c j ) − |V
1

c∗ |. Hence, the change in margin is

mC (S,y) =

[
max

ci
|V 1

ci |−|V
1

c∗ |

]
−

[
max

c j
|V 1

c j |−дC (S,y, c j ) − |V
1

c∗ |

]
= min

c j

(
дC (S,y, c j ) + max

ci
|V 1

ci |−
���V 1

c j

���) .
That is, the change in margin is driven by candidate with largest

starting vote (|V 1

c j |) and smallest loss in vote (дC (S,y, c j )). Now

considering all scenarios y, the constructive control objectives are

MOVC (S) = E
y
[mC (S,y)] POVC (S) = Pr

y
[mC (S,y) ≥ ∆C ] .

where ∆C = maxci |V
1

ci |−|V
1

c∗ |+1 is the necessary change in mar-

gin for c∗ to win. For destructive control, we can similarly write

the change in margin and corresponding objectives as

mD (S,y) = max

ci

(
дD (S,y, ci ) + |V 1

ci |
)
−max

c j
|V 1

c j |

MOVD (S) = E
y
[mD (S,y)] POVD (S) = Pr

y
[mD (S,y) ≥ ∆D ] .

where ∆D = |V 1

c∗ |−maxci |V
1

ci |+1.

4 ELECTIONS WITH TWO CANDIDATES
We start with elections with only two candidates. Recall that in this

setting, constructive and destructive control are equivalent, so our

results are stated only for constructive control (trying to ensure

c∗ wins the election). In order to state our algorithmic results, we

first introduce some background on submodular optimization and

influence maximization. A set function f : V → R is submodular if

for allA ⊆ B ⊆ V and all x ̸∈ B, f (A∪{x})− f (A) ≥ f (B∪{x})− f (B).

Intuitively, submodularity formalizes the property of diminishing

returns. The function f (S) which gives the expected number of

nodes reached by S under the independent cascade model is known

to be monotone submodular. It is well known that whenever f is

a monotone submodular function, the greedy algorithm gives a

(1 − 1/e)-approximation to the problem max |S | ≤k f (S).

It is natural to hope that submodularity would transfer to our

election control objectives MOV and POV. Our first result is that

submodularity does in fact hold for the MOV objective with two

candidates. Previous results for influence maximization do not di-

rectly apply because the MOV objective only counts nodes who

have c∗ in second place. Nevertheless, similar reasoning applies

(see supplement for proof).

Theorem 4.1. In an election with two candidates, MOV is a mono-

tone submodular function.

Hence, we can apply a greedy algorithm to MOV to obtain a

(1−1/e)-approximation (MOVConstructive in Algorithm 1). More-

over, this ratio is tight since MOV contains regular influence maxi-

mization as a special case when all nodes have c∗ in second place

(V 2

c∗ = V ). It is NP-hard to approximate influence maximization

with ratio better than 1 − 1/e [30]. Hence, two-candidate MOV is

computationally intractable with respect to exact optimization but

high quality and efficient approximation algorithms exist.

We now turn to the POV objective, where we maximize the

probability that c∗ wins the election. It is natural to think that sub-

modularity may also carry over to this setting. However, this is



Algorithm 1 Algorithms for MOV objective

1: function Greedy(h, k)
2: S ← ∅
3: while |S |< K do
4: v ← arg maxv ∈V \S h(S ∪ {v}) − h(S)

5: S ← S ∪ {v}

6: return S
7: functionMOVConstructive(k)
8: h(S) B Ey

[
f (S,y,V 2

c∗ )
]

9: return Greedy(h, k)

10: functionMOVDestructive(k)
11: h(S) B Ey

[
f (S,y,V 1

c∗ )
]

12: return Greedy(h, k)

Algorithm 2 Algorithms for POV objective

1: function EnumerateThreshold(h, ∆, k)
2: for β = ∆...n do
3: h′(S) B Ey [min (β ,h(S,y))]

4: Sβ = Greedy(h′,k)

5: return arg maxSβ ,β=∆....n Pry
[
h(Sβ ,y) ≥ ∆

]
6: function POVConstructive(k)
7: //recallmC (S,y) = Ey

[
f (S,y,V 2

c∗ )
]
for 2-candidate case

8: return EnumerateThreshold(mC , ∆C , k)

9: function POVDestructive(k)
10: return EnumerateThreshold(mD , ∆D , k)

not the case; we can provide a simple counterexample where POV

violates submodularity. Consider n isolated nodes, where
n
2
− k + 1

have c∗ as their first choice. Hence, to win the election it is nec-

essary and sufficient to influence k nodes, which can be accom-

plished by any choice of k seeds from among those with c∗ as their
second choice. Fix a seed set B containing k − 1 of these nodes

and consider any A ⊂ B (that is, A is strictly smaller). We have

POV(B) = POV(A) = 0. By adding a node v ∈ V 2

c∗ \ B to B, we
have POV(B ∪ {v}) − POV(B) = 1. However, since |A|< k − 1,

POV(A ∪ {v}) = 0 and hence POV(A ∪ {v}) − POV(A) = 0. This

contradicts the definition of submodularity. Essentially, the POV

objective displays a sharp threshold behavior, where additional seed

nodes have no value until we are close to winning. This behavior

in fact translates into the following strong hardness result:

Theorem 4.2. It is NP-hard to compute an α-approximation to

the problem max |S | ≤k POV(S) for any α > 0, even for two candidates

and even when the instance is deterministic.

Proof. We consider a deterministic objective: the ICM with all

propagation probabilities either 0 or 1. Without loss of general-

ity, we have only a single scenario and will drop the dependence

on y in f . Suppose that we have an α-approximation for POV-

maximization. We show howwe can use this algorithm to optimally

solve the influence maximization problem (i.e., maximizing f (·,V )),

which is known to NP-hard since it includes maximum coverage as

a special case. LetOPTIM be the optimal value of the influencemaxi-

mization problem andOPTPOV (∆) be the optimal value for Problem

1 with the given threshold. Fix any ∆ > 0. If ∆ ≤ OPTIM , then there

is a set S with POV(S) = 1 and hence OPTPOV (∆) = 1. Otherwise,

there is no set with value ∆ andOPTPOV (∆) = 0. Since the objective

to the POV problem is either 0 or 1, any α-approximation algorithm

for it must return 1 whenever OPTPOV (∆) = 1. Now, we can just

enumerate over ∆ = 1...n, where n is the number of nodes in the

graph. At each value of ∆, we ask the α-approximation algorithm

to solve the POV maximization problem with that value of ∆. We

return the solution corresponding to the highest value of ∆ for

which we can find a set with f (S,V ) ≥ ∆. By the above, this set is

an optimal solution to the influence maximization problem. �

We remark that since this hardness result has broader implica-

tions. Recall that POV(S) = Pry
[
f (S,y,V 2

c∗ ) ≥ ∆

]
where by Theo-

rem 4.1, f (S,y,V 2

c∗ ) is a submodular function. Therefore, the inap-

proximability result in Theorem 4.2 shows that it is in general hard

to approximate the problem of of maximizing the probability that

a submodular function exceeds a given threshold value. This is a

natural objective in other domains, e.g. for a risk-averse decision

maker who wants to control the probability of a bad outcome.

We pair this hardness result with a positive algorithmic result

regarding bicriteria approximations. A bicriteria approximation

algorithm gives up solution quality in more than one dimension,

and is of interest when hardness results preclude the usual notion

of approximation (as for our problem). We provide an algorithm

which has a solution quality guarantee whenever the election is

winnable by a “large margin". That is, there is a seed set with high

probability of greatly exceeding ∆ votes. Our algorithmwill attempt

to maximize the probability of exceeding exactly ∆ votes, but has a

guarantee relative to the optimal value for threshold
1

α ∆ for some

α < 1. That is, it is only compared to the optimal value of a harder

problem.

Our algorithm is a greedy strategy based on the surrogate func-

tion h(S) = Ey
[
min{β , f (S,y,V 2

c∗ )}
]
, where β is a chosen threshold

value. The intuition is to replace the sharp discontinuity of the

original POV objective by a surrogate which interpolates smoothly

up to the threshold β . However, we do not give any “credit" for

nodes reached beyond β since (unlike in the MOV case) we only

care about crossing the threshold. It is easy to see that the mini-

mum of a submodular function and a constant is itself submodular

[31]. Hence, h is submodular and amenable to greedy optimization.

POVConstructive (Algorithm 2) iterates over a series of possi-

ble thresholds for h, optimizes each one greedily, and outputs the

best of the resulting seed sets. Specifically, it tries every value of β
from ∆...n. For each β , it finds a seed set Sβ by greedily optimizing

Ey
[
min{β , f (S,y,V 2

c∗ )}
]
(Algorithm 2, Lines 3-4). Then, it outputs

the Sβ which maximizes Pry
[
f (Sβ ,y,V

2

c∗ ) ≥ ∆

]
, i.e., the one which

has the best probability of exceeding the true objective (Line 5).

The reason that we need to enumerate over values for β , instead
of just using the true threshold ∆, is that optimizing the surrogate h
might result in a solution which has value below β in every scenario.

However, we can show that if OPT (β) is high, there must be many

scenarios where Sβ has value close to β (a notion formalized in our

proof). Hence, if we try a sufficiently large β > ∆ and OPT (β) is

still high, there must be many scenarios with value at least ∆. This

is formalized in the following guarantee:



Theorem 4.3. In an election with two candidates, POVConstruc-

tive produces a solution S such that

Pr

y
[f (S,y,V 2

c∗ ) ≥ ∆] ≥ max

0<α<1

(
1 − 1

e

)
OPTPOV

(
1

α ∆

)
− α

1 − α

Proof. POVConstructive enumerates over values of α by try-

ing thresholds β = ∆...n. Fix a specific β and set α =
∆

β . We will

prove that Pry [f (Sβ ,y,V
2

c∗ ) ≥ ∆] ≥
(1− 1

e )OPTPOV ( 1

α ∆)−α
1−α . This

suffices the prove the theorem because we output the best of the Sβ .
A minor point is that the theorem takes the max over 0 < α < 1,

while we try only the discrete points α =
∆

∆
, ∆

∆+1
, ..., ∆

n . However,

these are equivalent because f (S,y,V 2

c∗ ) is always integral.

We divide the set of scenarios into those where the Sβ has

value at least αβ and those where it has less value. Let A = {y :

f (Sβ ,y,V
2

c∗ ) ≥ αβ} and B = {y : f (Sβ ,y,V
2

c∗ ) < αβ}. We have

1

m

∑
y∈A

min{β , f (Sβ ,y,V
2

c∗ )} +

1

m

∑
y∈B

min{β , f (Sβ ,y,V
2

c∗ )}

≥

(
1 −

1

e

)
max

|S | ≤k
h(S) ≥

(
1 −

1

e

)
βm ·OPTPOV (β)

where the first inequality follows from submodularity and the

second follows since the solution attaining value OPTPOV (β) for

the POVmaximization problem is a feasible solution to the problem

max |S | ≤k h(S) which has value at least βm · OPTPOV (β). We are

interested in the minimum possible size of A given that the total

value is lower bounded as above. By inspection, |A| is minimized

when min{β, f (S,y)} = β for each y ∈ A and f (S,y) = αβ for each

y ̸∈ A. In this case, we have

|A|

m
+ α

(
1 −
|A|

m

)
≥

(
1 −

1

e

)
OPTPOV (β)

and hence

|A|

m
=

1

m

m∑
i=1

1[f (Sβ ,y,V
2

c∗ ) ≥ αβ] = Pr

y

[
f (Sβ ,y,V

2

c∗ ) ≥ ∆

]
≥

(
1 − 1

e

)
OPTPOV

(
1

α ∆

)
− α

1 − α

which completes the proof. �

Theorem 4.3 in fact applies to the general problem of maximizing

the probability that a submodular function exceeds a threshold

value (complementing our hardness result in Theorem 4.2). As

discussed above, this may be of interest independently of election

control.

5 MULTIPLE CANDIDATES
We now consider election control with more than two candidates.

There is a target candidate c∗ and other candidates c1...cℓ . Note
that constructive and destructive control are distinct in this setting.

We will give algorithms for both cases for both the MOV and POV

objectives.

The problem becomes significantly harder in the multicandidate

setting because we must now reason simultaneously about several

objectives – whether each alternate candidate ci will accumulate

more votes than c∗. We demonstrate that, up to the loss of a con-

stant in the approximation ratio, it suffices to concentrate only on

the number of votes gained or lost by c∗ (not the margin against

each ci individually). This concept yields (bicriteria) approximation

algorithms for each setting along the lines of the two-candidate

case.

We start out with the MOVC objective (constructive control for

the margin of victory), since the idea is simpler to illustrate in

this case. The basic intuition is that the change in margin between

candidate ci and c∗ can be re-expressed as follows:

дC (S,y, ci ) =

∑
v ∈V 2

c∗\V
1

ci

χ (v, S,y) + 2

∑
v ∈V 2

c∗∩V
1

ci

χ (v, S,y)

= f
(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1

ci

)
Now, we can express the final margin in scenario y as

mC (S,y) = f
(
S,y,V 2

c∗

)
+ min

c j

(
f

(
S,y,V 2

c∗ ∩V
1

c j

)
+ max

ci
|V 1

ci |−
���V 1

c j

���)
where the first term is common to all candidates and reflects the

total number of voters who switch to c∗ and the min term selects

the c j who has the most remaining votes. In general, this second

term can be very difficult to approximate because it is the minimum

of submodular functions, which is not in general submodular (or

even approximable [31]). We might hope that there is some special

structure to the election control problem, but this is not the case:

Theorem 5.1. For any ϵ > 0, it is NP-hard to compute any

Ω

(
1

n1−ϵ

)
-approximation to the problem

max

|S | ≤k
min

c j

(
f

(
S,y,V 2

c∗ ∩V
1

ci

)
+ max

ci
|V 1

ci |−|V
1

c j |

)
Proof. We will consider instances where all of the c j start with

an equal number of votes and somaxci |V
1

ci |−|V
1

c j |= 0 for all c j . Thus,

the problem is just max |S | ≤k minc j f
(
S,y,V 2

c∗ ∩V
1

ci

)
. We reduce

from the robust influence maximization (RIM) problem [9, 27]. In

RIM, we are given a set of objectives f1... fr , each of which repre-

sent expected influence spread in an instance of the independent

cascade model on a common underlying graph G. He and Kempe

[27] show that it is NP-hard to compute Ω

(
1

n1−ϵ

)
-approximation

to the problem max |S | ≤k mini=1...r fi (S). Their proof holds when

each fi is deterministic (assigns probability 0 or 1 to each edge),

so we will assume that the instance is in this form. Let Gi be a

graph in which each edge of G assigned probability 0 by fi has
been removed. We create a graphG ′ as follows. G ′ contains each
Gi as a disconnected subgraph. For every v ∈ G, we add a vertex

v ′ to G ′. v ′ has an outgoing edge to the copy of node v in each of

the Gi subgraphs. Each such edge has propagation probability 1.

There is a target candidate c∗ and r additional candidates c1...cr .
Each of the v ′ nodes that were added has c∗ as their first choice.
Each node in subgraphGi has ci as their first choice and c∗ as their
second choice.



Suppose that we have an α-approximation algorithm for our

problem for some α = Ω

(
1

n1−ϵ

)
. Without loss of generality, we will

assume that this algorithm only selects nodes from the v ′ (since
if a seed set contains the copy of v in any subgraph, we can only

obtain greater influence spread by exchanging it for v ′). Note that,
for any such set of seed nodes, fi (S) = f (S,V 2

c∗ ∩V
1

ci ) Thus, if S is

an α-approximate solution for our problem, it is also an Ω

(
1

n1−ϵ

)
-

approximate solution to the RIM problem. �

Therefore, we should not hope for any algorithm which can

closely approximate the entirety of the objective; the min compo-

nent is too difficult to handle. However, we can leverage the fact

that the first term, f (S,y,V 2

c∗ ), is easy to optimize because it is just

a submodular function. Hence, the objective is the sum of an easy

term and a hard term. Importantly, we can show that optimizing

just the easy term (which is what MOVConstructive does) is

sufficient to obtain a constant factor approximation.

Theorem 5.2. MOVConstructive obtains a
1

3

(
1 − 1

e

)
- approxi-

mation to the MOVC problem with any number of candidates.

Proof. Let c(S,y) = arg minci f (V 2

c∗∩V
1

ci )−|V
1

ci | be the candidate

achieving the minimum in the definition ofmC . Let S
∗
be an optimal

seed set. Note that for all scenarios y, seed sets S , and candidates

ci , f (S,y,V 2

c∗ ) ≥ f (S,y,V 2

c∗ ∩V
1

ci ). Hence, we have

E
y

[
f

(
S∗,y,V 2

c∗

) ]
≥

1

3

E
y

[
f

(
S∗,y,V 1

c∗

)
+ f

(
S∗,y,V 1

c∗ ∩V
1

c (S∗,y)

)
+ f

(
S∗,y,V 1

c∗ ∩V
1

c (S,y)

) ]
Note that Ey [f (·,y,V 2

c∗ )] is a monotone submodular function,

which MOVConstructive greedily maximizes. Let S be the result-

ing seed set. We have

E
y

[
f

(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1

c (S,y)

) ]
≥ E

y

[
f

(
S,y,V 2

c∗

) ]
≥

1

3

(
1 −

1

e

)
E
y

[
f

(
S∗,y,V 2

c∗

)
+ f

(
S∗,y,V 2

c∗ ∩V
1

c (S∗,y)

)
+ f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

) ]
which allows us to bound the margin of victory relative to S∗ as

MOVC (S)

= E
y

[
f

(
S,y,V 2

c∗

)
+ min

c j
f

(
S,y,V 2

c∗ ∩V
1

c j

)
+ max

ci
|V 1

ci |−|V
1

c j |
]

= E
y

[
f

(
S,y,V 2

c∗

)
+ f

(
S,y,V 2

c∗ ∩V
1

c (S,y)

) ]
+ max

ci
|V 1

ci |−Ey

[
|V 1

c (S,y)
|

]
≥

1

3

(
1 −

1

e

)
E
y

[
f

(
S∗,y,V 1

c∗

)
+ f

(
S∗,y,V 2

c∗ ∩V
1

c (S∗,y)

)
+ f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

) ]
+ max

ci
|V 1

ci |−Ey

[
|V 1

c (S,y)
|

]
and some additional algebra (deferred to the supplement) yields

MOVC (S) ≥
1

3

(
1 −

1

e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

)
+ |V 1

c (S∗,y)
|−|V 1

c (S,y)
|

] )
.

Now by definition of c(S∗,y), f (S∗,y,V 2

c∗ ∩V
1

c (S∗,y)
)− |V 1

c (S∗,y)
|≤

f (S∗,y,V 2

c∗ ∩V
1

c (S,y)
) − |V 1

c (S,y)
| and so

|V 1

c (S∗,y)
|−|V 1

c (S,y)
|≥ f

(
S∗,y,V 2

c∗ ∩V
1

c (S∗,y)

)
− f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

)
This yields

MOVC (S) ≥
1

3

(
1 −

1

e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

)
+ f

(
S∗,y,V 2

c∗ ∩V
1

c (S∗,y)

)
− f

(
S∗,y,V 2

c∗ ∩V
1

c (S,y)

) ])
=

1

3

(
1 −

1

e

) (
MOVC (S∗) + E

y

[
f

(
S∗,y,V 2

c∗ ∩V
1

c (S∗,y)

) ])
≥

1

3

(
1 −

1

e

)
MOVC (S∗).

�

We also have a corresponding result for the destructive con-

trol case. Here, we can rewrite the change in margin asmD (S,y) =

f (S,y,V 1

c∗ )+maxci

(
f (S,y,V 1

c∗ ∩V
2

ci ) + |V 1

ci |−maxc j |V
1

c j |
)
.MOVDe-

structive greedily optimizes the submodular functionEy
[
f (S,y,V 1

c∗ )
]
,

which we show is a good surrogate for Ey [mD (S,y)].

Theorem 5.3. MOVDestructive obtains a
1

2

(
1 − 1

e

)
-approximation

to the multicandidate MOVD problem.

The proof, which is similar to that of Theorem 5.2, can be found

in the supplement.

Now, we extend these ideas to obtain similar guarantees for the

POVC and POVD objectives. Startingwith POVC , recall that our ob-

jective is to maximize Pry [mC (S,y) ≥ ∆C ], the probability that the

change in margin exceeds the number of votes needed to win. We

will prove a guarantee for the same algorithm POVConstructive

as from the two-candidate case. Recall that POVConstructive op-

timizes the surrogate Ey

[
min

(
β, f

(
S,y,V 2

c∗

))]
, enumerating over

possible values of the threshold β . We have the following bicriteria

approximation guarantee:

Theorem 5.4. LetOPT (∆) denote the optimal value of the problem

max |S | ≤k Pry [mC (S,y) ≥ ∆]. Let S be the set produced by POVCon-

structive. We have

POVC (S) ≥ max

0<α<1

e−1

3e−1
OPT

(
1

α ∆C

)
− α

1 − α



The proof can be found in the supplement. The main difference

from the two candidate case is that we do not directly optimize

1

m
∑
y min (β ,mC (S,y)) since it may no longer be submodular. In-

stead, we greedily optimize the submodular surrogate function

1

m
∑
y min

(
β , f (S,y,V 2

c∗ )
)
and show that this surrogate approxi-

mates
1

m
∑
y min (β,mC (S,y)). From there, the same argument as

in Theorem 4.3 extends to the multicandidate case. Analogous rea-

soning also yields a bicriteria guarantee for destructive control:

Theorem 5.5. LetOPT (∆) denote the optimal value of the problem

max |S | ≤k Pry [mD (S,y) ≥ ∆]. Let S be the set produced by POVDe-

structive. We have

POVD (S) ≥ max

0<α<1

e−1

3e−1
OPT (

1

α ∆) − α

1 − α

6 MIXED-INTEGER PROGRAMS
Thus far, we have considered approximation algorithms for election

control, motivated by computational hardness results for exact

optimization. Nowwe give exact mixed-integer linear programming

(MILP) formulations. This serves two purposes. First, it allows us

to study the effectiveness of election control for problem instances

with are within the range of state of the art MILP solvers. Second,

we can determine the empirical effectiveness of the approximation

algorithms proposed in earlier sections.

There are two principal difficulties in obtaining MILP formula-

tions. First, the objective is stochastic, ranging over an exponential

number of scenarios. Second, even for a single fixed scenario, the

number of nodes reached by a seed set is a nonlinear function.

We first show how to linearize the problem when have only a

single scenario y. Recall that y corresponds to a sampled graph

Gy , where every edge e is removed independently with probability

1 − pe . Our MILP will have a binary variable sv ∈ {0, 1} for each
node v ∈ V , where sv = 1 indicates that v is a seed node. We

will maximize an objective over all sv ∈ {0, 1}
|V |

which satisfy∑
v ∈V sv ≤ k (at most k nodes are seeded). The challenge is to

embed the nonlinear objective into the constraints of the MILP. Let

x
y
v ,v ∈ V be a binary variable indicating whetherv is influenced in

scenario y. We must constrain x
y
v to be 1 only ifv truly is reachable

in Gy from some node with sv = 1. To accomplish this, let R(v,y)

be the set of nodes which have a directed path to v in scenario y.
R(v,y) does not depend on the decision variables s and can easily

precomputed. Using this set, we constrain the x variables as:

x
y
v ≤

∑
u ∈R(v,y)

su ∀v ∈ V .

Now ee deal with stochasticity using sample average approxima-

tion. We first sample scenariosGyi , i = 1...r , maintaining a separate

copy x
yi
v for each sampled scenario. Finally, we average over the

variables in each scenario to obtain the final objective.

Using these components, we now give concrete formulations for

each of the problem instances that we consider. We will assume that

scenariosy1...yr have been sampled, where r is a tunable parameter

trading off computational cost and sampling error.

6.0.1 Constructive control. We create a variable дC (yi , c j ) for
each scenario yi and candidate c j which represents the change in

the margin between c j and c∗ in scenario yi . Using these variables,

we set a variablemC (yi ) for each scenario yi which represents the

overall change in margin. These variables are constrained as

дC (yi , c j ) ≤
∑

v ∈V 2

c∗

x
yi
v +

∑
v ∈V 2

c∗∩V
1

cj

x
yi
v

mC (yi ) ≤ дC (yi , c j ) + max

ci
|V 1

ci |−|V
1

c j |∀i, j

which gives the following MILP to maximize the MOV:

max

s,x,дC ,mC

1

r

r∑
i=1

mC (yi )∑
v ∈V

sv ≤ k

The next formulation maximizes the POV:

max

s,x,дC ,mC ,u

1

r

r∑
i=1

ui

−M(1 − ui ) + max

ci
|V 1

ci |−|V
1

c∗ |+1 −mC (yi ) ≤ 0∑
v ∈V

sv ≤ k, ui ∈ {0, 1} i = 1...r

Here, ui is a binary variable representing whether c∗ wins the
election in scenario yi , whileM is a large number.

6.0.2 Destructive control. Now, we use an analogous set of con-

straints to set variables дD (yi , c j ) andmD (yi ):

дD (yi , c j ) ≤
∑

v ∈V 1

c∗

x
yi
v +

∑
v ∈V 1

c∗∩V
2

cj

x
yi
v

−M(1 − z
j
i ) +mD (yi ) −

(
дD (yi , c j ) + |V 1

c j |−max

k
|V 1

ck |

)
≤ 0 ∀i, j∑

j
z
j
i ≥ 1 ∀i, z

j
i ∈ {0, 1} ∀i, j

The second and third constraints use a new set of binary variables

z
j
i , where z

j
i = 1 indicates that in scenario yi , mD (yi ) is at most

the change in margin between c j and c∗. The constraint
∑
j z

j
i ≥ 1

requires thatmD (yi ) must be bounded by one such value, and so can

be at most the maximum margin. Using these variables, the MOV

and POV MILPs are analogous to those for constructive control.

7 EXPERIMENTS
We now present experimental results comparing our approximation

algorithms to the solutions found via mixed integer programming.

We show results on four datasets. First, netscience, a collaboration

network of researchers in network science, with 1461 nodes [38].

Second, facebook, the subgraph centered on 10 Facebook users, with

2888 nodes [37]. Third, polblogs, a network of links between political

blogs, with 1224 nodes [38]. Fourth, irvine, a graph representing

instant messages exchanged between students at U.C. Irvine, with

1889 nodes [37]. We select these datasets because they represent

the kinds of networks on which political messages (such as fake



Table 1: Percent of MILP value obtained by approximation algorithm.

netscience facebook polblogs irvine

k = 25 50 100 25 50 100 25 50 100 25 50 100

Constructive

|C |= 2 99.5 99.3 100. 100 100 100 100 100 99.4 100 100 99.4

|C |= 5 82.8 90.1 91.5 90.8 90.9 90.9 97.4 97.8 99.5 97.7 95.4 96.8

|C |= 10 80.9 89.1 98.3 80.9 83.7 88.6 98.7 99.2 99.6 96.9 97.4 98.9

Destructive

|C |= 2 99.9 99.6 99.9 100 100 100 100 100 99.4 100 99.8 98.8

|C |= 5 73.8 73.2 83.3 87.7 79.7 81.6 100 97.8 99.3 100 99.0 100

|C |= 10 75.9 87.2 97.2 81.8 85.0 89.0 98.9 99.3 99.6 100 97.3 99.0

Figure 1: Probability of victory. Top: constructive. Bottom:
destructive. Left: netscience. Right: polblogs.

news) spread. We also note that our approximation algorithms can

easily be scaled to much larger networks since we can apply the

same techniques developed in the influence maximization literature

[14, 42]. However, our focus here is to characterize the performance

of our algorithms in comparison to the optimal solution, so we select

datasets which are feasible for mixed integer programming. For

each network, we randomly generated 30 sets of voter preferences.

We start with the MOV objective. Table 1 shows the percentage

of the MILP’s value which is obtained by our approximation algo-

rithms (MOVConstructive and MOVDestructive respectively),

averaging over the 30 instances per network with propagation prob-

ability p = 0.1. We vary the number of seed nodes k and the number

of candidates |C |. We see that the approximation algorithms per-

form well across all settings, obtaining expected change in margin

at least 73% of that of the MILP. Variance over the 30 sampled in-

stances was uniformly low (with standard deviation less than 0.05

of the reported mean in almost all cases). For 2-candidate elections

the approximation algorithms obtain nearly 100% of the optimal

value on all networks. The empirical approximation ratio degrades

with the number of candidates, particularly when the budget k is

small. Overall, our approximation algorithms are highly effective for

election control via the MOV in both constructive and destructive

control, particularly with a moderate number of candidates.

We now turn to the POV objectives. We show results for k =

50, |C |= 5, comparing our bicriteria approximation algorithms to

the corresponding MILP. To keep the experiments timely, we ran

each approximation algorithm for 150 random values of the thresh-

old β instead of enumerating over all (empirically, this yielded very

similar solution quality). Figure 1 shows the results on netscience

and polblogs for constructive and destructive control. Results for

facebook and irvine can be found in the supplement. The x axis

shows the starting margin (∆C or ∆D ) in each randomly generated

instance while the y axis shows the POV. The instances fall into

three groups. First, when the margin is small, both the approxi-

mation algorithms and the MILP have a high POV. Second, when

the margin is large, both have a small POV. Third are intermediate

points where the approximation algorithm and MILP strongly di-

verge. Averaged over all instances, the approximation algorithm

obtains 40-60% of the MILP’s value (depending on the network).

However, there are instances among the intermediate cases where,

e.g., the approximation algorithm obtains a POV of 0.1%, but the

MILP finds a solution with POV 99%. We conclude that optimizing

the POV objective can be very computationally difficult in narrowly

winnable elections, dovetailing with our theoretical results.

8 CONCLUSION
Fake news and other targeted misinformation are an increasingly

prevalent way of interfering with democratic elections. We intro-

duce and study the problem of election control through social in-

fluence, providing algorithms and hardness results for maximizing

both the margin and probability of victory for an attacker in both

constructive and destructive control. Our results indicate that so-

cial influence is a salient threat to election integrity, particularly

in the MOV case where we provide high-quality approximation

algorithms. Maximizing the POV is manageable in easier instances,

but difficult both theoretically and empirically in narrow races.
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