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Abstract

Treatable infectious diseases are a critical challenge for pub-
lic health. Outreach campaigns can encourage undiagnosed
patients to seek treatment but must be carefully targeted to
make the most efficient use of limited resources. We present
an algorithm to optimally allocate limited outreach resources
among demographic groups in the population. The algorithm
uses a novel multiagent model of disease spread which both
captures the underlying population dynamics and is amenable
to optimization. Our algorithm extends, with provable guar-
antees, to a stochastic setting where we have only a distri-
bution over parameters such as the contact pattern between
agents. We evaluate our algorithm on two instances where
this distribution is inferred from real world data: tuberculosis
in India and gonorrhea in the United States. Our algorithm
produces a policy which is predicted to avert an average of
least 8,000 person-years of tuberculosis and 20,000 person-
years of gonorrhea annually compared to current policy.

Introduction
Treatable infectious diseases cause hundreds of thousands
of cases of disability and death worldwide. Often, this bur-
den is caused by long-term diseases which are continuously
present in the population, as opposed to short-term epi-
demics like influenza. For instance, tuberculosis (TB) deaths
in India numbered over 480,000 in 2014 (WHO 2015b), and
even developed nations like the U.S. have observed over
395,000 cases of gonorrhea in 2015 (CDC 2015). In both
cases, many individuals remain undiagnosed although treat-
ment is available. Outreach efforts to increase screening can
lower disease burden; e.g., the Indian government conducts
advertising campaigns for TB awareness. Limited resources
require these campaigns to be carefully targeted at the most
effective groups for reducing disease. Targeting is compli-
cated by changing population dynamics, as individuals age
and migrate over time, as well as by uncertainty around dis-
ease transmission rates. Officials currently make such deci-
sions by hand as no algorithmic assistance is available.

To remedy this situation, we design an algorithm to divide
a limited outreach budget between demographic groups in
order to minimize long term disease prevalence under un-
certain population dynamics. Our approach contrasts with
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existing algorithms for disease control, which often con-
sider disease spread between nodes on a static graph (Saha
et al. 2015; Borgs et al. 2010). This is a sensible model of
short term disease spread but is less suitable for long-term
planning in diseases such as TB or gonorrhea, where people
are born, die, age, and move (Luke and Stamatakis 2012).
Accounting for changes in the underlying agents is partic-
ularly salient for a policymaker who must divide resources
between demographic groups over many years to maximize
societal long-term health. For instance, India produces 5
year plans to combat TB (RNTCP 2016). Our approach also
contrasts with previous work on agent-based disease models
(Jindal and Rao 2017; Lee et al. 2010). Such models may
include realistic behaviors, but their complexity usually pre-
cludes algorithmic approaches to finding the optimal policy
in an entire feasible set.

An additional challenge, largely unexplored in previous
algorithmic work, is that of uncertainty. Data is always lim-
ited; policymakers are never sure of exactly how many peo-
ple are infected in each group, or of the contact patterns be-
tween them. In order to impact real world policy, algorithms
for resource allocation must account for such uncertainties.

We introduce a model which both captures underlying
agent dynamics and can be solved using an algorithmic ap-
proach in a stochastic setting. We make four main contri-
butions. First, we present the MCF-SIS model (Multiagent
Continuous Flow-SIS) where disease spreads in a multiagent
system with birth, death, and movement. The system evolves
according to SIS (susceptible-infected-susceptible) dynam-
ics and is stratified across age groups. This introduces a new
problem in multiagent systems: computing the optimal re-
source allocation under MFS-SIS, as in the case where an
outreach campaign must decide how to divide limited ad-
vertising dollars (or rupees) between the groups.

MCF-SIS introduces a continuous, nonconvex, highly
nonlinear optimization problem which cannot be solved by
existing methods. Many factors must be accounted for. E.g.,
between-group disease transmission makes focusing on the
groups with the most infected agents suboptimal. Moreover,
agents in a targeted group are not cured instantaneously, so,
e.g., to reduce prevalence in age group 30, we may need
to start targeting resources at age 27. Lastly, we consider a
stochastic setting where parts of the model (contact patterns
between agents, the number of infected agents in each group,
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Figure 1: Top: Illustration of the MCF-SIS model. Bottom:
a single step in the model with 2 age groups.

etc.) are not known exactly but are drawn from a distribution.
Our second contribution shows that optimal allocation in

MCF-SIS is a continuous submodular problem. This opens
up a novel set of optimization techniques which have not
previously been used in disease prevention. Continuous sub-
modularity generalizes submodular set functions to contin-
uous domains. Intuitively, infections averted by spending
one unit of treatment resources can no longer be averted by
additional spending, creating diminishing returns. Contin-
uous submodularity is deliberately enabled by our model-
ing choices, in particular our shift from the discrete, graph-
based setting common in previous work (Saha et al. 2015;
Borgs et al. 2010) to a continuous, population-based model.

Our third contribution is a new algorithm called DOMO
(Disease Outreach via Multiagent Optimization), which ob-
tains an efficient (1 − 1/e)-approximation to the optimal
allocation. Our algorithm builds on a recent theoretical
framework for submodular optimization (Bian et al. 2017).
DOMO’s generalization of this framework to the stochastic
setting may be of independent interest.

Our fourth contribution is to instantiate MCF-SIS in two
domains using empirical data which takes into account be-
havioral, demographic, and epidemic trends: first, TB spread
in India, and second, gonorrhea in the United States. DOMO
averts 8,000 annual person-years of TB and 20,000 person-
years of gonorrhea compared to current policy.

MCF-SIS: a new modeling approach
The MCF-SIS model has two goals: to enable both realis-
tic population dynamics and efficient optimization. In MCF-
SIS, a finite population evolves in discrete time. Each agent
has two possible states. In the susceptible (S) state, an agent
has not contracted the disease. In the infected (I) state, an
agent can transmit the disease to others. They can also be
cured and return to the susceptible state.

The population is segmented into n groups. Our running
example is where each group is an age range because trans-
mission patterns for infection vary with age (Suen et al.
2015). Figure 1 shows this instantiation of the model. How-
ever, our techniques generalize to any segmentation (e.g.,

geographic location or occupation). We denote the number
of susceptible agents in each group at time t as the vector
St where Sti is the number of susceptible agents of group i.
Likewise, It gives the number of infected agents. The total
population is N t = St + It. At each time step, agents move
between groups according to a movement matrix M , where
Mij is the fraction of agents in group iwho move to group j.
For instance, when the groups represent age, agents advance
from age i to i+ 1. So, we have Mi,i+1 = 1, i = 1...n− 1,
and all other entries of M are zero. Agents die of natural
causes at rate µi. New agents enter the population through
birth or migration, given by the vector S̃t. We also allow for
an exogenous inflow of infected agents Ĩt.

Disease spreads through contact with infected agents, de-
scribed by the matrix β: agents in group i interact with group

j with frequency βij . A fraction ρti =
∑n
j=1 βij

Itj
Nt

j
of group

i encounters an infected agent and becomes infected them-
selves. At each time step, a fraction di of infected agents in
group i die. Of those who do not die, a fraction νi are cured
and become susceptible again. νi is referred to as the clear-
ance rate, and captures the total rate at which infected agents
are diagnosed, enter treatment, and are successfully cured.

While compartmental models like ours do not simulate
the micro-level details of individual agents, they can be real-
istic enough to capture long term trends. Similar models are
commonly used in health policy analyses (White et al. 2005;
Chan, McCabe, and Fisman 2011; Dowdy et al. 2012).

Interventions: We consider optimal resource allocation
modeled through the clearance vector ν. Suppose a policy-
maker can conduct outreach to selected groups. Since some
percentage of people who see an advertisement will enter
treatment, we can model the policymaker’s decisions as in-
creasing νi for the targeted groups. We suppose the algo-
rithm has a budget K for new advertising to split among
the groups. ν starts at a lower bound L, reflecting pre-
campaign treatment rates. The algorithm may select any
post-campaign ν with ||ν−L||1 ≤ K and Li ≤ νi ≤ Ui ∀i,
where U < 1 is an upper bound. Note that U is strictly less
than 1 because we can never realistically treat 100% of any
given group. Denote the set of ν satisfying these constraints
as the feasible polytope P . While we focus on the above
P for concreteness, our approach works for any downward-
closed polytope. The goal is to select a ν ∈ P which mini-
mizes the total infected agents over a time horizon T .

Optimization formulation: We assume that the number
of infected agents (and hence deaths) is small compared to
the total population. For instance, less than 1% of the total
population is infected with TB in India or gonorrhea in the
U.S. (WHO 2015b; CDC 2015). Therefore, we consider the
total population size (the vector N t) as fixed independently
of ν. Thus, the state of the system is captured just by the
infected vector It. A single group i evolves as

It+1
i =

n∑
j=1

Mji

(
Stj(1− µj)

n∑
k=1

βjk
Itk
N t
k

+ (1− νj)(1− dj)Itj
)

+ Ĩti .



The expression in parentheses is the number of infected
agents in group j. The first term is the number who are newly
infected and the second is the number from previous steps
who are not cured and do not die. The outer summation ac-
counts for the number of these infected agents who transition
from group j to group i. Lastly, we add the new arrivals Ĩti .

We can iterate the equation for each group forward from
t = 1...T in order to obtain the total number of infected
agents at time T . Instead though, we will work with an
equivalent matrix formulation of the system for ease of nota-
tion. For convenience, we will use the augmented state vec-
tor xt = [It 1]. That is, xt is the number of infected people
appended with a single one. The one is just for mathematical
convenience. We formulate a time-varying linear operator
Bt(ν) such that xt+1 = Bt(ν)xt via the block form

Bt(ν) =

[
At(ν) Ĩt

~0 1

]
where the block At(ν) is defined as

At(ν) = M>
(
diag(St)diag(1− µ) β diag

( 1

N t

)
+diag(1− ν)diag(1− d)

)
.

where diag(v) is the matrix with the entries of v on the
diagonal.At(ν)It gives the number of infected agents given
only the internal dynamics of the population, resulting in a
total of At(ν)It + Ĩt infected agents. Figure 1 shows an ex-
ample of a simple case of the model with two age groups.
Example parameter values are given, along with the ini-
tial prevalence I0. The first equation computes the matrix
A0(ν). The second applies A0(ν) to the initial prevalence
I0 and then adds the exogenous inflow Ĩ0. The number of
infected agents in group 1 increases because more agents are
infected than cured. These agents then transition to group 2.
Because there are only two groups in our modeled popula-
tion for this example, all agents in group 2 exit the modeled
population.

We aim to minimize the total infected agents over T steps:

min

T∑
t=1

c>

 1∏
j=t

Bj(ν)

x0

1>ν ≤ 1>L+K (1)
Li ≤ νi ≤ Ui ∀i = 1...n

c can be any nonnegative cost vector, e.g., c = [~1 0] (n
ones and a zero) sums over the number of infected agents
in each group. x0 is the initial state (number of infected
agents). We use the notation

∏1
j=tB

t(ν) as shorthand for
Bt(ν)Bt−1(ν)...B1(ν).

Algorithmic approach
We now turn to computing a (near) optimal solution to Prob-
lem 1. This is a continuous optimization problem since each

νi may take any value in [Li, Ui]. Unfortunately, the objec-
tive function is nonconvex, which rules out standard meth-
ods for efficiently obtaining good solutions. It is also highly
nonlinear since the decision variables ν are raised to the
power T , which may be large (e.g., a time horizon of 10
or 20 years). This suggests that many local optima could be
present and renders optimization more complicated.

However, MCF-SIS’s definition contains useful structure.
Intuitively, resources have diminishing returns: infections
averted by increasing one νi can no longer be treated by in-
creasing some other νj . Diminishing returns suggests sub-
modularity. However, since our optimization problem is not
discrete, standard submodularity and the greedy algorithm
do not apply. Instead, we show that our objective is con-
tinuous submodular, a generalization of submodularity to
continuous domains (Bach 2015; Bian et al. 2017). Contin-
uous submodularity enables efficient optimization and al-
lows us to handle the stochastic case in a natural man-
ner. This framework is crucially enabled by the modeling
choice to shift from the discrete, graph-based setting com-
mon in previous work (Saha et al. 2015; Borgs et al. 2010;
Chung, Horn, and Tsiatas 2009) to a continuous, population-
based model. Not only does our model account for popula-
tion dynamics, but it is also more amenable to optimization.

We now define continuous submodularity1. Let ∧ and
∨ denote coordinatewise minimum and maximum respec-
tively. A function F : Rn → R is continuous submodular if
F (x)+F (y) ≥ F (x∨y)+F (x∧y) for all feasible x, y. This
is reminiscent of submodular set functions, but extended to
the continuous domain. F is called continuous supermodular
if the inequality is reversed. If F is continuous submodular,
−F is continuous supermodular. Note that continuous sub-
modularity is not convexity or concavity; it is a distinct class
of functions with distinct optimization techniques.

We will draw on these techniques to solve Problem 1.
Bian et al. (2017) define a theoretical framework for opti-
mizing continuous submodular functions. In order to make
use of this framework, we need to first show that our prob-
lem falls into it. Then, we need to fill in the algorithmic com-
ponents required to instantiate the approach that the frame-
work suggests (two oracles explained below). Lastly, we
need to prove that our objective is sufficiently smooth for
the resulting algorithm to converge in a reasonable number
of iterations. None of these pieces are covered by previous
work; they are algorithmic contributions specific to our do-
main.

We start out by showing that the continuous submodu-
larity framework applies. Denote the objective of Problem
1 as F (ν). We will show that F is continuous supermodu-
lar which in turn implies that −F is continuous submodu-
lar. Since minimizing F is equivalent to maximizing −F ,
this will allow us to design an efficient algorithm based on
continuous submodularity. Our proof that F is supermod-
ular has two steps. First, we show that F is a posynomial
in the variables 1 − νi. A posynomial is a polynomial with

1Technically, we use the stronger condition of DR-
submodularity. Details related to showing our objective is
DR-submodular can be found in the supplement.



entirely nonnegative coefficients2. Then, we will show that
any function which is a posynomial in 1 − ν is continuous
supermodular in ν. We start by showing the following:
Lemma 1. F is a posynomial in the variables 1− νi.
Proof. First, note that F depends on ν only through the term
diag(1− ν). Note also that every term in the expression for
the block At(ν) is nonnegative. Since matrix multiplication
is just a series of multiplications and additions, it follows
that c>

∏1
j=t

[
B(ν)j

]
x0 (and hence the sum over time t =

1...T ) is a polynomial in 1 − ν and all of the coefficients
of this polynomial are nonnegative. This can also be seen
through the expression for the evolution of a single group,
which contains only terms of the form (1 − νi) multiplied
by nonnegative coefficients.

Note that this step hinged on MCF-SIS’s continuous,
population-based nature. Since F is a posynomial in 1−νi, it
can be written in the form F (ν) =

∑`
j=1 aj

∏n
i=1(1−νi)pij

where aj is a nonnegative coefficient for term j and pij is a
nonnegative integer. This representation does not have to be
computed; its existence is just useful for the proofs.

We now turn to showing that any function that is a posyn-
omial in 1 − ν is continuous supermodular in ν. Our result
builds on the following lemma:
Lemma 2 (Staib and Jegelka (2017)). Let f1...fn : R →
R+ be nonnegative, differentiable functions which are ei-
ther all nonincreasing or all nondecreasing. Then, F (x) =∏n
i=1 fi(x) is continuous supermodular.
Using this, we show the following:

Lemma 3. Whenever F is a posynomial in 1− ν, it is also
continuous supermodular in ν.

Proof. First, note that continuous supermodularity is pre-
served under nonnegative linear combinations. Hence, we
focus on an individual term

∏n
i=1(1− νi)pij in the posyno-

mial representation of F . For each i = 1...n, define fi(ν) =
(1 − νi)

pij . Note that each fi is nonincreasing in νi since
0 ≤ νi < 1. Further, fi(νi) ≥ 0 always holds. The conclu-
sion now follows from Lemma 2.

To sum up: we want to minimize F , which via Lemma 1
is a posynomial in 1−ν. Via Lemma 3, this implies that F is
continuous supermodular in ν. Hence, maximizing −F is a
continuous submodular optimization problem. We will actu-
ally maximize the objective G(ν) = −F (ν) +M , where M
is any constant large enough to ensure thatG is nonnegative.
Clearly, this is also equivalent to minimizing F .

The DOMO algorithm
We now introduce the DOMO algorithm (Disease Outreach
via Multiagent Optimization, Algorithm 1) to exploit con-
tinuous submodularity. We start out with the determinis-
tic setting where model parameters are fully known. Here,
DOMO builds on the Frank-Wolfe approach (Bian et al.

2Under some circumstances, posynomials can be optimized via
geometric programming. Unfortunately, this does not work for our
problem since the feasible set is not convex in 1− ν.

2017) (though new techniques are needed in the stochas-
tic setting). DOMO generates a series of feasible solutions
ν0...νR, where R is the total number of iterations. More
iterations imply greater accuracy (Theorem 1 bounds the
number needed). The algorithm starts at ν0 = L, the lower
bound. Each iteration alternates between two steps (lines 4-
5). First, it computes the gradient of the objective at the cur-
rent point. Second, it takes a step in the direction of the point
which optimizes the gradient over the feasible set P . Essen-
tially, at each iteration the algorithm spends a fraction 1

R of
the budget according to the current gradient. Higher R al-
lows finer control over the solution.

It is known that this strategy gives a (1 − 1/e)-
approximation for continuous submodular functions (Bian
et al. 2017). However, it is not an out-of-the-box approach
(even in the deterministic setting). DOMO requires two ora-
cles (specific to our problem) to instantiate the algorithm – a
gradient oracle which supplies the gradient ofG at any given
point, and a linear optimization oracle which maximizes a
given linear function over the feasible set P . Additionally,
the number of iterations (and hence runtime) required is po-
tentially unbounded. We prove (in Theorem 1) that our ob-
jective is sufficiently smooth for the algorithm to converge
efficiently. We first supply appropriate oracles.

Gradient oracle: Instead of tediously computing the
posynomial representation, we directly compute the gradi-
ent using the block matrix representation of MCF-SIS. De-
note Y t(ν) =

∏t
j=1B(ν)j . We can concisely express the

gradient via matrix calculus (Petersen and Pedersen 2008):

∂G(ν)

νi
= −

T∑
t=1

Tr

[(
∂c>Y t(ν)x0

Y t(ν)

)>
∂Y t(ν)

νi

]
=

−
T∑
t=1

Tr

[
cx>0

t∑
`=1

[
`+1∏
i=t

Bi(ν)

]
∂B`(ν)

∂νi

[
1∏

i=`−1

Bi(ν)

]]
where the first step is the chain rule and the second fol-

lows from the product rule and induction on n. Tr denotes
the matrix trace. This reduces gradient evaluation to com-
puting ∂

∂νi
Bj(ν) for each i and j. Bj depends on νi only

through the block Aj(ν), so we have ∂
∂νi

Bj(ν) = (1 −
di)M

>Ji,i, where Ji,i is the matrix with a one in entry (i, i)
and zeros elsewhere. By appropriately ordering multiplica-
tions, the entire procedure uses T matrix multiplications.

Linear optimization oracle: Since P is a polytope, lin-
ear optimization could be performed by solving a linear pro-
gram. However, exploiting the special structure of P lets us
perform linear optimization in time O(n log n) via a simple
greedy algorithm (function GREEDYLINEAR in Algorithm
1). This algorithm simply orders the group i = 1...n ac-
cording to ∇iG(ν) (Line 10). It then proceeds through the
groups in this order, spending as much of the budget as pos-
sible (Line 15) before moving on to the next.
Lemma 4. GREEDYLINEAR finds an optimal solution to the
linear optimization problem over P .

Proof. We recognize the linear optimization problem as a
fractional knapsack problem where each item takes up the



Algorithm 1 DOMO

1: function DOMO(R,K)
2: ν0← L
3: for k = 1...R do
4: ∇k ← GRADIENTORACLE(νk−1)
5: yk ← LINEARORACLE(∇k,K)
6: νk ← νk−1 + 1

Ry
k

7: return νR
8: function GREEDYLINEAR(∇, K)
9: y← L

10: π← ordering of 1...n such that∇π(i) ≥ ∇π(i+1) ∀i
11: i← 0
12: while ||y − L||1 < K do
13: yπ(i) += min(Uπ(i) − Lπ(i),K − ||y − L||1)
14: i += 1
15: return y

same amount of space. The value of each item is the cor-
responding entry of the gradient. Hence, greedily taking as
much as possible of the highest-value items is optimal.

Convergence analysis: The runtime of Algorithm 1 de-
pends on the number of iterations R, which Bian et al.
(2017) show must be proportional to the Lipschitz constant
of the gradient of G. Essentially, functions with Lipschitz
continuous gradients are smooth in a sense that allows the
algorithm to quickly converge. Let Umax = maxi Ui. We
bound the Lipschitz constant for our model and show that

Theorem 1. For any ε > 0, using R = K
ε

(
T

1−Umax

)2

iterations, the ν output by Algorithm 1 satisfies G(ν) ≥(
1− 1

e − ε
)
G(ν∗), where ν∗ is an optimal solution.

The proof is given in the supplement due to space con-
straints. We remark that Umax is always bounded away from
1 since we can never realistically treat 100% of any single
group. Thus, the number of iterations is O

(
KT 2

ε

)
. Each it-

eration requires one linear optimization over P (which takes
time O(n log n) using GREEDYLINEAR) and one gradient
evaluation (which takes timeO(Tnω), where ω is the matrix
multiplication constant). The final runtime is O

(
KT 3nω

ε

)
.

Stochastic optimization
In reality, some parameters of the multiagent system will
not be known exactly. For instance, the contact matrix β
is almost never precisely known in practice. Additionally,
for many diseases, there is considerable uncertainty about
the initial prevalence I0 (Suen et al. 2015). We now extend
DOMO to the stochastic case where model parameters are
drawn from a distribution instead of known exactly. Hence,
we can infer an appropriate prior distribution from whatever
data is available and optimize the expected value over this
distribution. Our formulation is very general, and will allow
any of the parameters (M , β, I0, Ĩ , etc.) to be unknowns.
Suppose that we have an uncertainty set Ξ for the joint val-
ues of the unknowns and Ξ is equipped with a distribution

D. Let G(·, ξ), ξ ∈ Ξ denote the objective for any fixed set
of parameters. We wish to solve the stochastic problem

max
ν∈P

E
ξ∼D

[G(ν, ξ)] (2)

Such stochastic problems are typically difficult compu-
tationally. For instance, Zhang et al. (2014) study vaccina-
tion on a graph when the initially infected nodes (I0 in our
model) are uncertain. To design a scalable algorithm, they
must assume thatD is an independent distribution. However,
I0 for different groups will clearly be correlated because of
the underlying multiagent dynamics. A common approach to
accounting for uncertainty without such strong assumptions
is robust optimization, which solves the worst case prob-
lem maxν∈P minξ∈ΞG(ν, ξ). Han et al. (2015) take this ap-
proach for a vaccination problem when the graph β is un-
known. However, robust optimization introduces a compu-
tationally challenging bilevel optimization problem which
requires specialized techniques. This makes it difficult to in-
corporate uncertainty in multiple parts of the model.

We resolve these difficulties through an alternate ap-
proach which efficiently handles uncertainty over any of the
model parameters, expressed through an arbitrary distribu-
tion D. Moreover, we obtain provable guarantees just as in
the deterministic case. We start out by noting that the ob-
jective of Problem 2 is continuous submodular since it is a
nonnegative linear combination of continuous submodular
functions. Also note that Algorithm 1 accesses the objective
only through GRADIENTORACLE. While we can no longer
access the gradient in closed form, the key idea is to instead
use a stochastic approximation. At each iteration, we draw
r samples ξ1...ξr i.i.d. from D. Our estimate of the gradi-
ent is ∇̂ = 1

r

∑r
i=1∇G(ν, ξi). We then modify Line 5 of

Algorithm 1 to call LINEARORACLE(∇̂).
To our knowledge, no previous work has analyzed

stochastic continuous submodular optimization. We give a
new analysis which draws on tools for analyzing stochastic
concave problems (Hazan and Luo 2016). We extend these
techniques to (nonconcave) continuous submodular func-
tions and prove the following guarantee:

Theorem 2. Using r =
(

4KT
1−Umax

)2

samples, DOMO out-

puts a ν satisfying E [G(ν, ξ)] ≥
(
1− 1

e − ε
)
E [G(ν∗, ξ)]

where ν∗ is an optimal solution to Problem 2. The number
of iterations is the same as Theorem 1.

Note that the guarantee for E[G(ν, ξ)] exactly matches
that for G(ν) in the deterministic case. Further, our analysis
generalizes to any smooth continuous submodular function
and may be of interest in other domains.

Experiments
We now present experimental results on two real-world
problem instances: TB prevention in India and gonorrhea
prevention in the United States. In both, we produce a highly
realistic evaluation by instantiating MCF-SIS using demo-
graphic and epidemiological data drawn from a variety of
governmental and NGO sources. Since prevalence numbers



Table 1: Infected people per 100,000 according to the Na-
tional Family Health Survey. Reported in (Suen et al. 2015).

Year/Age 30 35 40 ...

1993 555.499 680.426 1059.359 ...
1998 781.136 940.218 827.718 ...
2003 329.045 453.052 522.364 ...
2005 539.154 625.982 722.140 ...

Table 2: Example parameters. E.g., d = 0.544 indicates that
54.4% of people with active TB die each year. Ranges indi-
cate variance over age and/or year.

Parameter Value Source

Starting pop. 355,692,752 (UN 2015)
Total infected 2,949,057 (Suen et al. 2015)
Status quo ν 0.07 - 0.13 (RNTCP 2016)
µ 0.003 - 0.02 (WHO 2015a)
d 0.544 (Tiemersma 2011)

are highly uncertain, and the contact matrix β not explicitly
known, we estimate a distribution over both using this data
and apply DOMO as described above. MCF-SIS is stratified
by age. We account for migration and births by comparing
the number of individuals in each age group at each year to
the next, after accounting for non-disease deaths.

Tuberculosis: True TB prevalence in India is subject to
great uncertainty, as many patients do not report to approved
treatment facilities (RNTCP 2010). We estimate prevalence
(the initial infected vector I0 and new arrivals Ĩ) using age-
stratified data provided by the Indian government for the
years 1993-2005 (IIPS 2014), see Table 1. These figures are
reported with 95% confidence intervals; we sample values of
(I0, Ĩ) within these assuming a Gaussian distribution. Table
2 shows example parameter values. For each sample, we find
the β̂ that minimizes the mean squared error between the ob-
served I and that predicted by MCF-SIS. Figure 3a shows
an example β̂; darker cells represent more interaction. The
matrix is sparse, with most entries along the diagonal (repre-
senting within-group interaction) and a few groups who in-
teract more with others. Population statistics and disease pa-
rameters (e.g., d) are taken from World Health Organization
lifetables, the Indian government Revised National Tubercu-
losis Control Program reports, and United Nations Statistics
Division demographic reports (see supplement). Our model
includes 30 age groups representing ages 30-60.

Gonorrhea: We infer the initial prevalence I0 and new
arrivals Ĩ from reported disease cases. However, up to
80% of cases are asymptomatic and may remain undetected
(CDC 2015). We assume a uniform distribution for the true
prevalence at every age (I) with an upper limit of 4 times
the reported values and a lower bound equal to the value re-
ported by the U.S. Centers for Disease Control. We generate
a set of sampled (I0, Ĩ) from this uniform distribution. For
each sample, we infer the β matrix which best matches the
age-stratified prevalence rate in the same manner as for TB.
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Figure 2: Top: Improvement in mean case-years averted by
DOMO over each other algorithm. Bottom: Fraction of 100
sampled instances in which DOMO’s averted case-years is
at least as high as each baseline.

Data on population demographics is taken from the WHO
and the U.S. Census (details in the supplement). Our model
includes 46 age groups, representing ages 15-60.

Baselines: No previous work directly addresses our set-
ting, so we define several baselines. First, degree, which
greedily spends the budget on the groups with highest
weighted degree with respect the contact matrix β. This cap-
tures the intuition that groups which are in contact with
many others are important targets for treatment. Second,
eigen, which greedily spends the budget on groups accord-
ing to their eigenvector centrality in β. Degree and eigen
test whether it is necessary to consider population dynam-
ics, or if just the contact matrix is sufficient. Third, myopic,
which selects the ν that gives the largest reduction in infec-
tions after a single timestep in the MCF-SIS. This can solved
exactly via linear programming. Myopic tests if DOMO’s
long-term reasoning is needed. Fourth, prevalence, which
allocates greedily to the groups with the most infected in-
dividuals. This is common practice in epidemiology. Fifth,
equal, which splits the budget equally over all groups. Sixth,
SQ which allocates the budget proportional to the status-
quo ν produced by current government policies. This models
spending the budget according to the currently used strategy.

Results: For each domain, we obtain the status quo treat-
ment rate νSQ from existing data (which is the lower bound
L). Then, we assume that a policymaker may distribute
an additional budget K via an outreach campaign. We set
U = 1.05 · νSQ. We do not plot runtime because all algo-
rithms, implemented in Python, run in under 10 minutes on
all datasets and parameter combinations. DOMO is run with
R = 100 iterations and r = 100 samples.

We start with TB. The top row of Figure 2 shows the im-
provement in objective value of DOMO over each baseline.
Improvement is in terms of disease burden: the total person-
years of disease summed over time 1...T (the objective func-
tion). Each plot shows two values of K on the x axis corre-
sponding to small and large budgets. The y axis plots the
difference between the disease burden under each baseline
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Figure 3: (a) A sampled β matrix. (b) Illustrated allocation

versus DOMO (note the log scale), averaging over 100 sam-
ples for the unknown parameters. One plot shows the short
horizon T = 5, and one shows the long horizon T = 25.

DOMO outperforms all baselines (has positive improve-
ment) under each configuration. The difference is larger for
K = 0.3 than K = 0.1, indicating that DOMO makes more
strategic use of the additional resources. Most differences
also grow as T increases; the longer time horizon presents
a more challenging planning problem. The two closest com-
petitors are degree and eigen, which obtain relatively close
values for K = 0.1. However, their gap with DOMO in-
creases substantially for K = 0.3. The performance gap
is very significant in policy terms: for K = 0.3, T = 25,
DOMO averts (approximately) between 64,000 to 300,000
person-years of disease more than each baseline. All differ-
ences are statistically significant (t-test, p < 0.001). Given
the annual death rate d = 0.544, DOMO averts over 6,500
TB deaths per year compared to status quo policy.

Further, DOMO performs optimally out of all considered
algorithms in at least 90% of specific realizations of the
parameters. In Figure 2, the y axis shows the fraction out
of 100 randomly sampled parameter combinations in which
DOMO performed at least as well as every other algorithm.
We again plot results for T = 5, 25, and K = 0.1, 0.3. The
values are all fairly high, ranging from 0.9 to 1. We con-
clude that our stochastic optimization approach successfully
captures uncertainty in this domain because it has high per-
formance almost all circumstances, not just in expectation.

Figure 3b contrasts the allocation made by DOMO and
other policies. We focus on K = 0.3, T = 10. Each line
shows the amount of budget the corresponding algorithm
allocates to each group (shown on the x axis). To avoid
crowding the plot, we show DOMO, degree, prevalence,
and SQ. Myopic’s allocation was very close to prevalence
while eigen’s was similar to degree. We see that SQ allo-
cates the budget relatively uniformly, while DOMO concen-
trates heavily on particular groups. Moreover, DOMO does
not simply allocate to high-prevalence groups. This indicates
that DOMO exploits long term dynamics beyond which
agents are immediately infected. DOMO also does not sim-
ply allocate to high degree groups. Its allocation overlaps
with the high degree elderly groups, but places little budget
on the high degree groups near ages 30 and 40. We conclude
that DOMO leverages non-obvious patterns in the multia-
gent system’s dynamics to outperform simpler heuristics.
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Figure 4: Results for gonorrhea instance. Left: improvement
in case-years averted by DOMO over each other algorithm.
Right: fraction of instances in which DOMO performs at
least as well as each baseline.

We find that DOMO also performs better than the base-
lines in our gonorrhea example (Figure 4). Generally, results
are similar to TB, so due to space limitations, we show re-
sults for T = 25. The left hand figure shows the improve-
ment in disease burden that DOMO makes over each base-
line; DOMO substantially outperforms all of the baselines
for both values of K. For K = 0.3, T = 25, DOMO re-
sults in at least 500,000 fewer person-years of disease than
any other algorithm. The right hand figure plots the frac-
tion of sampled instances in which DOMO performs at least
as well as each algorithm. DOMO outperforms equal, de-
gree, eigen, and SQ in 100% of instances. It outperforms
myopic in approximately 75% of instances, and prevalence
in 60-70%. DOMO’s expected performance is much higher
than prevalence because in those sampled instances where
DOMO outperforms prevalence, it does so by a large mar-
gin. When DOMO outperforms prevalence, it does so by 3.9
million person-years on average. Conversely, when preva-
lence outperforms DOMO, it does so by approximately
200,000 person-years on average.

Conclusion and additional related work
We develop an algorithmic approach to targeting disease
outreach campaigns which synthesizes agent-based mod-
eling and algorithmic disease control. A large body of
work in health policy and agent based modeling devel-
ops realistic disease models (Jindal and Rao 2017; Perez
and Dragicevic 2009; Swarup, Eubank, and Marathe 2014;
Beheshti and Sukthankar 2014; Picault et al. 2017). None
use an algorithmic approach for disease control, instead ex-
amining a limited set of policies that can be exhaustively
searched. In contrast, we consider the challenge of algorith-
mically optimizing over the entire feasible set.

Much algorithmic work focuses on immunizing the nodes
of a graph to limit disease spread (Chen et al. 2016; Saha
et al. 2015; Song, Hsu, and Lee 2015; Borgs et al. 2010;
Drakopoulos, Ozdaglar, and Tsitsiklis 2014). None of this
work considers the challenges of population dynamics.
While others may examine subgroup dynamics (Zhang et al.
2016) or time trends (Prakash et al. 2010), our work presents
a novel approach to optimizing resource allocation for infec-
tious diseases in a stochastic setting.
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